
APPLICATION FRAMEWORK FOR CANVAS
THE VIRTUAL REALITY ENVIRONMENT FOR

MUSEUMS

Hank Kaczmarski, University of Illinois, Urbana-Champaign, Illinois USA
hank@isl.uiuc.edu
Camille Goudesuene, Benjamin Schaeffer, Lance Chong, Rose Marshack, Lee
Hendrickson, Jim Crowell, University of Illinois, Urbana-Champaign, Illinois USA
cog@uiuc.edu, schaeffr@isl.uiuc.edu, lchong@ncsa.uiuc.edu, rose2000@uiuc.edu,
spiralinaspiral@gmail.com, jimc@uiuc.edu

Abstract

 The technical specifications of CANVAS, the Collaborative Advanced Navigation Virtual
Art Studio, were described in a paper presented at the EVA 2005 conference in Firenze [1].
We take this opportunity to describe the application framework that currently exists to
allow artists to develop electronic media projects in CANVAS and how the increasing
number of 3-D datasets being gathered by museums can be displayed in CANVAS. We also
describe a case study of the issues involved in creating one narrative media art project 360
within the confines of the existing toolsets available to potential users of CANVAS.

 When we set out to create an immersive visualization space for museum galleries, our
experience with large-scale, complex hardware and software intensive virtual reality
displays environments told us that every modification to simplify the system for artists to
create applications or stabilize the display for audiences to interact singly or in groups
carried significant baggage that would affect multiple aspects of the resultant experience.
The cost and complexity of a virtual environment can be reduced in many ways: smaller
and fewer displays, simpler or omitted motion tracking, simpler user input devices,
simpler audio hardware. Naturally, issues arise when designing a VR application for
simplified hardware, or porting one to simpler hardware than what it originally used in
legacy applications.
 Display hardware can be much of a virtual environment’s total cost, so it is an obvious
choice for economizing. Omitting screens on the ceiling or floor also simplifies
installation in rooms with no oversize ceiling. Applications often do not need ceiling or
floor screens, since people find it more comfortable to move neck and eyes horizontally.
Horizontal field of view is also more critical than vertical for VR applications. A
visualization that lets the user walk entirely around an object, viewing it from all angles,
needs to be redesigned for a three-wall 270-degree display. For a single-wall display the
redesign may even replace walking around with rotating the object in place “behind” the
wall, like a keyboard-and-mouse interface. A physically smaller display, like a two-
meter rather than a three-meter room, may suffer more from projector “hot spots” on the
screen as the user walks around. This varying brightness may be compensated for by
reducing the application’s dependence on visual dynamic range. (This may already have
been done, since projectors have less dynamic range and color sensitivity than desktop

 1

mailto:hank@isl.uiuc.edu
mailto:harleman@uiuc.edu
mailto:schaeffr@isl.uiuc.edu
mailto:lchong@ncsa.uiuc.edu
mailto:rose2000@uiuc.edu
mailto:spiralinaspiral@gmail.com

displays.) However, by reducing the size of the viewable space, one converts what was a
room-sized experience into a less interactive experience, a price normally too high to pay.
 Motion tracking can be another expensive part of a virtual environment. A tethered
system costs less than a wireless system, but in practice it forbids a display that entirely
surrounds the user. In other words, it enforces a “front” orientation in the environment.
Applications intended for a fully-immersive cube display (astronomy, architectural
walkthroughs) will need different user controls when the user generally faces one
direction instead of turning freely. Conversely, applications which began on a desktop
computer will port more easily. In CANVAS, as the design presupposed a multi-user
experience, so individual viewer tracking is considered a nuisance as a rule, but is
permitted in the basic system design for exhibits which might benefit from individual
spatial navigation.
 For user controls (or “user interface”) most cave-like environments use a wand. Early
wands included only a few controls, i.e., buttons and a joystick. Since then, one trend is
to use handheld controllers from video games, “gamepads.” These have several
joysticks, sliders, and perhaps a dozen buttons. An application designed for such a rich
input device may need serious redesign for a simpler wand. The informal literature on
videogame design may be helpful here, particularly discussions of porting games from a
desktop computer’s large keyboard to the dozen keys of custom “platform” hardware like
PlayStation or Nintendo. Game designers prefer dropping features to adding submenus
and other baroque command structure. Another trend in wands is simplification: a
motion tracker with only one button (demanded by Macintosh users?). Porting a one-
button application to a more powerful motion-tracked gamepad seems trivial. But we
find that the gamepad’s extra nonfunctional buttons and joysticks perplex users,
particularly new users. It may be worth buying a second, simpler, wand. It may even be
worth adding features so the extra buttons do something.
 Removing motion tracking entirely from the wand is an extreme simplification. Some
would argue that this changes VR into just a large display. Porting an application that
used a tracked wand to such an environment is almost the same as porting to a desktop
PC. Generating 3DOF or 6DOF gestures from 2-D joysticks is awkward—just ask any
CAD-software user. CANVAS does not require or prevent multiple modalities of device
tracking; a laser pointer is supported by aiming video cameras at the rear of the screens to
track wavelength-filtered light, traditional pulsed-DC, AC or infrared trackers can be
easily integrated if an exhibit benefits from the significant added cost of such devices.
 Removing head-tracking can be far more tolerable than removing wand-tracking,
though. Head-tracking is missed most when the user manipulates objects rather than, say,
navigating through a large world. When several people are viewing a scene, head-
tracking may even be undesirable. CANVAS permits the tracking of not only the viewer’s
head but any number of one or multiple viewers hands, feet or torso if the deployed
tracking system is so configured.
 Spatialized sound is a significant sensory addition to an immersive space. Audio
sources can be tightly attached to positions in the virtual space for a head-tracked user
wearing headphones. Giving up head-tracked headphones, or equivalently having
multiple persons, practically means that audio can be attached only to broad regions of
space. This is acceptable if the primary purpose of audio is confirming user commands
or alerting the user to changes. Loudspeakers, even an array of 4 or 8 loudspeakers, also

 2

cannot compete with the precision of tracked headphones. But they are much friendlier
for a multi-user installation. Even headphones which do not block outside sounds still
discourage users from talking among each other.

Syzygy – Middleware for CANVAS

 While PC clusters are radically cheaper than special purpose VR hardware, they do
have disadvantages, the most important of which is the added complexity of managing
the system and writing software for it. Consequently, for a PC cluster to be a viable
platform, special middleware must be created that will simplify both of these tasks. This
paper describes one such solution, Syzygy, an open source middleware solution for PC
cluster VR. While, in its initial incarnation, CANVAS runs a Syzygy cluster, we mention
other software solutions for such an environment and note that the list grows as the
popularity of immersive spaces crosses continents. We focus on three areas: a distributed
operating system (Phleet) that helps applications running on the cluster cooperate the
hardware and one another, low-level APIs for synchronizing graphics displays running on
different computers, and high-level APIs for writing cluster applications.
 Syzygy contains the Phleet distributed operating system that portably (across
Windows, Linux, Mac OS X, and Irix) coordinates software running on our clusters. In
this system, a central szgserver manages all the other Phleet-enabled software. In
particular, it centralizes configuration of the system. Instead of having configuration files
scattered on each computer, the szgserver stores all the information in a central database,
and through the Phleet APIs, programs query that database over the network to configure
themselves upon start-up. This is a substantial win for cluster administration, especially
for Windows machines that are awkward to remotely administer. This configuration
database is stored for each Phleet user, making the cluster a true multi-user environment
with each person able to have her own data, executables, and application preferences.
 Applications running in a cluster environment are really collections of individual
programs (here called application components) that send data to one another over the
network. Consequently, in addition to configuration, Phleet must also coordinate how
application components connect to one another, for instance telling a component that
wants to display graphics information the location of another component offering it.
Furthermore, applications must start up and shut down in an orderly fashion. To enable
portable remote execution, Phleet includes szgd, a daemon program that launches Syzygy
executables in response to Phleet messages produced either by command line tools or one
of Syzygy’s programming frameworks. As an application launches, it uses the Phleet API
to scan the cluster, stopping services that it does not need (or that are incompatible with
its operation) and starting services, such as sound players or input device drivers, it does
need (using the szgd’s running on cluster nodes), along with launching any specific
application components of its own. In reverse, Phleet also allows for orderly application
shut down, making sure all cluster resources are freed and that each application
component exits cleanly.
 When using a PC cluster for visualization, one of the most important considerations is
how the displays will be synchronized. At the high end, the vertical refresh of each video
signal occurs at the same instant using a process called genlocking, which is supported by
high-end graphics cards. This is necessary for PC cluster active stereo, where a 3D image

 3

is produced by alternating right eye and left eye images while the users wear LCD shutter
glasses that blank their lenses in time with the video signal, making sure that the user’s
right eye is covered when the left eye image is visible and vice-versa. However, genlock
is not required for passive stereo, where the right and left eye images are simultaneously
projected onto the same surface, with (say) different polarizations, and users wear cheap
filter glasses to make sure that each of their eyes sees only the appropriate image. Using
this technology, a coherent stereo image can be seen across the whole cluster using very
inexpensive consumer graphics cards.
 In addition to genlock, we consider framelock, the property by which given
corresponding frames of 3D graphics are displayed at the same time on the cluster nodes.
This is important since different views of a scene (which is exactly what we see on the
cluster nodes) can be drawn at different rates. Without framelock, upon (say) user
navigation, the more quickly drawn views will move before the more slowly drawn,
causing an objectionable tearing at the display boundaries. This is an application-level
property (since only the application knows when it is going to produce another frame) as
opposed to genlock, which concerns the video signal. Here, we can actually do a good
enough job in software by creating a synchronization API (as exists in Syzygy) that
operates over the cluster network. In this case, once each cluster node is ready to display
its new frame, it communicates with the others and they all display them exactly when
everyone is ready. This is not a perfect solution without genlock since the new frame will
be displayed on the vertical refresh of the graphics card, implying that perfect
synchronization requires genlock. However, practice shows that software framelock
along with passive stereo produces good enough (actually quite good) results, and, when
combined with its inexpensive nature, make this a winning technology combination for
PC cluster visualization.
 At a higher level, rendering synchronized images across the PC cluster requires
synchronizing the data rendered on each PC in coordination with synchronizing when
that data is rendered (as has been discussed already with genlock and framelock). This
requirement reaches into application architecture. On the one hand, we can try to design
an API that is transparent to the programmer. This method’s advantage, hiding the data
synchronization from the programmer, is also its disadvantage, forcing the programmer
to write to a particular API and preventing her from constructing clever (application-
specific) methods of sharing data. Consequently, with PC cluster visualization, it is
important to have a range of options available: different tools will be more appropriate
for different jobs. We first consider different ways data sharing can be made transparent
to the programmer. Next, we discuss Syzygy’s distributed scene graph, followed by a
description of its API for constructing distributed applications that explicitly handle the
data sharing they require.
 There are several different types of data that an API could transparently share. For
instance, the raw pixels comprising the scene could be rendered centrally, sent across the
network, and displayed on each cluster node. The APIs to do this are essentially found
directly in the OS’s windowing subsystem and thus are straightforward to implement.
However, this approach is undesirable in many circumstances because of the extremely
large amount of pixel data and the very limited networking bandwidth between cluster
nodes. It might make sense in special cases, such as distributed ray tracers, where the
application is already sending pixels, but makes much less sense with an OpenGL

 4

application, especially when the cluster it runs on has a slower network (as might very
well be the case if we are trying to save money in cluster construction).
 At a higher level, we could distribute the OpenGL commands themselves. Well-
known systems like Chromium take this approach. They modify the system OpenGL
dynamic library to capture OpenGL commands, which are buffered and sent across the
network for display by a specialized program. The advantage to this approach is that it
works with any OpenGL program, but the disadvantage is that OpenGL is a very
communications-intensive API, which implies that Chromium has the potential to
severely stress the cluster network. Consequently, like in the previous case, this class of
APIs demands a fast cluster network and is possibly liable to network bottlenecks.
 At a higher level still, we can focus on sharing the semantics of a virtual world via a
scene graph API. Here, all the information required to render the world is stored in a
database (the scene graph), which the application modifies to manipulate objects,
navigate around, or perform other tasks. Because the scene graph can be drawn
continuously in a background thread (technically speaking, it is “retained mode” to
OpenGL’s “immediate mode”), this style of API is ideally suited for interactive
manipulation at an interpreter, like Python (as in the Syzygy distributed scene graph) or
Smalltalk (as in Squeak). Freeform manipulation at the interpreter prompt allows rapid
prototyping of virtual worlds and, thus, is a very valuable system property. To make a
scene graph API transparently distributed, we must simply have the ability to transfer
total scene graph state from one application to another and afterwards transfer any update
messages. Normal application operation, then, just generates scene graph changes, which
are potentially much smaller than the entire scene and, consequently, much easier on less
powerful networks. Because of this, several well-known scene graphs APIs have been
adapted for distributed virtual environments, where participants each work on a shared
scene graph at geographically dispersed locations. For instance, Avango extends SGI’s
Performer and Distributed Open Inventor extends (obviously enough) SGI’s
OpenInventor.
 Syzygy takes these ideas and adapts them to PC cluster graphics. The main difference
between the PC clusters and distributed virtual environments is the greater level of
synchronization required for the PC cluster case. Here, we must also be worried about
when the updates are processed on the cluster nodes in addition to worries in the DVE
case that each computer receive the same update stream. At each frame on each cluster
node, we want the same updates to have been processed by their scene graphs.
Consequently, the Syzygy distributed scene graph application synchronizes itself with the
frames produced on the cluster nodes. As the nodes are drawing the next frame, the
application buffers its scene graph updates. Once the nodes have all finished drawing the
frame, they simultaneously display it and request the application send them the updates it
has buffered. Each node now receives the same update sequence, which it applies to its
local scene graph before beginning to draw the next frame. In this way, each node draws
a view of the same world.
 Sometimes it is easier to explicitly add data sharing to an application than to make the
application use an available programmer-transparent API. For these cases, Syzygy offers
its master/slave framework. Here, an instance of the application runs on each cluster
node. These applications operate using a well-defined event loop. At the loop’s start, the
master application instance processes data from input devices or other sources and

 5

changes its internal state. The portion of application state that affects rendering is then
automatically pulled from memory, packed into a message, and sent to the slave
application instances. The slaves then unpack the message and use it to update their
internal state. Everybody now draws the scene, synchronizing before displaying the
frame, and then repeats the event loop. The programmer explicitly designates what part
of application state is shared. This method often allows easy porting of existing
applications to a cluster environment, given source code.

Using CANVAS for Visualizing 3-D Data

 In addition to electronic art created explicitly for CAVE™-like spaces [2], CANVAS
has as a goal to be able to display and interact with complex 3-D (and higher
dimensional) data sets, for example MRI, fMRI, CAT or camera-based scanned image
data. Our software for viewing sets of fMRI brain images uses volume rendering rather
than a slicer plane, but it still uses texture maps. The 3-D data is rendered on a stack of
semitransparent parallel planes. We orient the planes to face the user, no matter where in
the immersive space they or the brain are. Visual artifacts appear when the user moves
inside the brain itself, but meaningful patterns are hard to see anyways from such
viewpoints. To view the Visible Human data [3], we first interpolated and down-sampled
the 3-D data so it could fit in a PC's memory. Much of this 600-line C++ program is
devoted to building a semitransparent texture map from this data. This texture map is
applied to a large square "slicer plane" attached to the wand. Lower-resolution texture
maps are computed when moving the wand, to increase frame rate.
 We designed a program for painting in space. Moving the wand while holding one
button leaves a trail drawn like a ribbon. Holding another button erases any parts of a
ribbon near the wand. Its simplicity is compelling because the artist can work from any
angle, even inside -- almost sculpting rather than painting. Head-tracking is essential
here. We first wrote it in a few hundred lines of C++, using Standard Template Library
containers to efficiently split and merge ribbons during erasing and drawing. Avoiding
fragmented ribbons is critical for display at high frame rates. A recent port to Python did
not shrink the code size, but simplifies maintenance of the software. Most of the CPU
use is in the OpenGL libraries, so this port did not reduce performance.

Design in CANVAS versus Design for CANVAS

 In fields such as product design, interior design, and architecture, the so far well-
known form of computer visualization, commonly called "computer-aided design" or
CAD has been indispensable for more than two decades. As the computer hardware and
software gets cheaper and better, and consumers, designers, manufacturers, and
distributors get more savvy and sophisticated, the definition of CAD is about to take on
new meanings. A successful design on one hand is a vessel of bringing users designer's
ingenuity in aesthetics and functionality, on the other hand is a good solution in finding a
balance among manufacturing, marketing and consumers. It is a very complicated
process for one designer to work on, and is a major communication effort for a team or
multiple teams in a cooperation setting. In design education, helping students to
understand and practice in such a complicated process is also a major challenge. This is a

 6

strong market demand that calls for variety of truly useful and efficient computer
powered facilitating systems to be developed.
 Because of its advantage in display and computing power, CANVAS as a visualization
tool has remarkable potential. In a virtual environment, the interpretation of CAD could
be extended to using computer visualization and simulation as a tool to assist most, if not
all, aspects of the design process. In other words, computer visualization can be used not
only to display the 3D appearance model of a design, but it can be helpful in cultivating a
successful design concept starting from its research stage, option analysis, ideation,
concept selection, manufacturing and costs evaluation, to usability and ergonomics
simulation, marketing planning, and finally in the future, but certainly not the last step or
the least important factors, social and environmental impact outlook. A virtual
environment such as the CANVAS can be a perfect workbench for such a job. It will
allow information from multiple links of the chain to be visualized and presented to a
much larger audience/user group, and further more, it will enable every user to contribute
input. It could potentially increase the speed of R&D process dramatically by bringing
together the art and science of intuition and problem solving in design into every team
member's arm's reach.
 Other design related peripheral uses which could be seamlessly integrated into such an
environment include remote collaboration, concept demonstration, and even visualized
project management such as event scheduling and resource management. It is a time and
effort efficient way to exchange information and ideas within a design team, or to a
student even an outsider such a client. A Syzygy-driven CANVAS allows users to
navigate through 3-D models created in popular CAD programs. In order to meet the
needs of our design community, CANVAS will be constantly evolving, and being updated
and redesigned by both the designers in this case who are also part of the end user group,
as well as the computer scientists and hardware engineers, and thus ensure it is sound in
functional, operational, and usability design.

VRML - Virtual Reality Modeling Language in CANVAS

 VRML is a 3D format especially well suited for CAVE-like environments, from the
most elaborate six-surface, fully-immersive spaces to the purposely simplified 3-wall
environment of CANVAS. An artist is able to use VRML to create not only complex
objects but also the world those objects inhabit as well as interactions between objects
[4]. Compared to many other 3D tools, VRML was specifically designed to aid in the
creation of and interaction with virtual environments [5]. Further adding to its usefulness
is the fact that many pre-existing data sets can be easily converted for use in VRML-
ready environments [6].
 There is a long history (in technology standards) of VRML usage in the museum
sciences. Examples range from virtual specimens to virtual museum tours and
exhibitions [7,8,9,10]. Archival projects have produced models which can be readily
explored using VRML [11]. Data visualization is another task VRML handles well [12,
13]. Thus, in a move towards the practical virtualization of a museum’s assets, VRML is
an attractive option.
 Taking VRML from its ‘native’ environment of a web browser on a desktop PC into
the immersive environment of a CAVE only increases VRML’s effectiveness. In the

 7

same way that a CAVE enhances many other 3D applications, so does the immersion
increase the presence one experiences when interacting with VRML worlds or models.
Furthermore, a CAVE provides powerful methods for interacting with and navigating
VRML datasets that are simply not available on desktop PCs.
 In CANVAS, a CAVE powered by Syzygy, VRML duties are handled by VRMLView,
an application developed to visualize data in the VRML (and related OpenInventor)
format [14]. VRMLView allows the user to configure how the VRML data is loaded,
both in terms of visual representation and spatial orientation, and additionally how the
user wishes to interact with the world or object. Navigation of the VRML world is
handled by Syzygy’s Scene Graph architecture [15]. A user can interact with VRML
objects in terms of rotating, translating or scaling the object freely. VRMLView also
supports the playback of any animations that may have been created in or for the world,
such that a user could be automatically taken through a VRML scene.
 Thus, VRML is a versatile tool for the creation of virtual worlds or models and
CANVAS using Syzygy and VRMLView is a compelling environment in which to explore
such worlds.

PYTHON AND MORE

 Scripting languages like Python [16], Perl [17], and Ruby [18] are easier to learn and
faster to program in than traditional C or C++. With these, we find that students without
years of programming experience can prototype and design VR visualizations far more
quickly. In one semester, a student can then learn details about their problem domain and
about VR, instead of mastering the intricacies of C++ programming. Even our seasoned
programmers benefit from the Python bindings we have wrapped around Syzygy's C++
interface. Faster programming improves the quantity of code, of course, but quality
improves too. Inevitably, the initial prototype changes dramatically over a few weeks as
new ideas occur and the final design emerges. Since less programming time is invested
initially, the programmer is less reluctant to greatly rework or even abandon early
designs. A better design results. Of course programs written in C and C++ tend to run
faster (at a higher frame rate). But CPUs have become so fast in recent years that this is
rarely a practical concern. CPU time is valuable, but not nearly as much so as
programmer time.

360, A Case Study

 As described in [1], 360, a narrative art exhibit, is a three-walled, gallery-centered
immersive room presentation of the life-stages of the romantic life of a couple. In its
initial showing at the Krannert Art Museum in August 2004, 360 contained a timeline of
the couple meeting in a café, with the gallery viewer wearing stereo glasses seated at a
real table within eye and earshot of the couple at a virtual table nearby. Navigation
through the life of the couple was afforded through a joystick. The seated position of the
viewer played off of the decision to have the three graphics computers draw all images
and spatialized sounds from a fixed head position. This initial exhibit involves MPEG-
compressed video within a series of viewer-selectable computer-generated 3-D scenes,
but the guiding principal of this project was to not make decisions that limited the ability

 8

to expand the scope of the project over time. Even in the simple early stages of planning,
it became obvious that this project would be a collaboration between artists and computer
programmers.
 At the first meeting of the multidisciplinary team formed to create 360, the artists
presented ideas about the "look and feel" of the project, pointed out some of the aesthetic
ideas they liked about previous immersive space applications – the textured, layered,
somewhat murky backgrounds of the dance application, and presented a movie of a fly-
through of a computer-generated world; this world was full of interesting graphic icons,
checkerboards, flying objects; it was a canned world, not generated on the fly, probably
used Maya, and swept a camera through the model. The computer programmers in
attendance noted that their world would be computed "on the fly" and thus could be much
more dynamic than this world, more easily configurable, and more interactive, since our
camera will be controlled in real time.
The presentation of graphics materials was most helpful in determining what the look and
feel of the project should be. Next, the accompanying narrative was explained, and then
how the story may be presented was discussed, both in a logical and storytelling sense,
and then in a more technical sense; i.e., the mechanics of displaying an animation and
how the programmers will technically interact with the world. At the end of the first set
of meetings, media collection was deemed to be the responsibility of the artists; some
would collect the graphics and textures, others would collect and edit sound and videos.
Meanwhile, computer programmers would develop a framework for this world to sit in.
Challenges later occurred with this approach as it was discovered that what an artist’s
eyes sees in a finished video is significantly different than what appears in the 3-D world
after going through the hardware and software that integrate that video into the virtual
world, necessitating re-shooting of video to pre-distort color balance and
brightness/contrast/gamma levels.
Navigational Issues
 The biggest problem in communicating between techies and artists was trying to
explain the necessity of consistency in navigational systems. For instance, the joystick
was either going to move us through the space, or move objects toward our position. It
could not do both without a mode-switching mechanism, and there was a desire to keep
the user interface as simple as possible, so mode-switching was out of the question.
In addition, there was the problem of "picking." How shall we decide when an object
should be "activated?" One suggestion was a proximity activator, which could allow a
user interface which flew us through the space. As we approached a threshold near an
object, the object could become activated and tell us its story, take us to another
screen, etc. As we left the object, life would return back to normal (for some reason, this
suggestion did not take.) Any other object picking modality required a button, or some
sort of picking device, and many more complications, and it had to be explained that once
a interface coding system had been developed, it needed to stay consistent, for
programming sake and also for ease of use for the audience.
A Helpful Solution for Artists
 A proposal was made to develop a text configuration file, where the artists may write
along the lines of:
Shape (color, size, x-coordinate, y-coordinate, z-coordinate, texture.jpg)i.e.,
Box (Red, 20, 5, 10, -3, myTexture.jpg)

 9

Sphere (blue, 10, 3, 6, 10, anotherTexture.jpg)
Movie (white, 10, 4, 8, 22, myMovie.mov)
This would allow non-programmers to place objects in the file, render them, and test the
project as an interior decorator might test out a room in a 3D modeling program. The
program would be written to read in this text configuration file at run-time, so no compile
or debugging would be necessary. At the initial stage of the 360 project, this idea was
scrapped due to time and monetary constraints and also, because the OpenGL code is
quite simple and similar to the above syntax; it was thought that the artists could just as
easily learn the coding syntax. What we did not consider, however, was that the artists
would be required to learn a new editor, learn to compile and debug their code, and learn
how to run it on a complicated distributed-graphics, grid operating system. In the future,
the configuration file route will be taken.

ACKNOWLEDGEMENTS

 The authors wish to acknowledge the groundbreaking work done at the Electronic
Visualization Laboratory at the University of Illinois, Chicago, Illinois, USA on room-
sized immersive visualization and are grateful to Kathleen Harleman, Director of the
Krannert Art Museum, University of Illinois, Urbana-Champaign, USA for her continued
faith in the CANVAS project. Work on CANVAS is a result of development of the
Beckman Institute VR-Cube [19], a project funded by the National Science Foundation
under grant 0079800 and the Beckman Institute. CAVE™ is a trademark of the Board of
Trustees, University of Illinois.

REFERENCES

[1] EVA 2005 Florence Proceedings pp.160-165
[2] http://www.evl.uic.edu/art/index.php3
[3] Banvard, Richard A., The Visible Human Project® Image Data Set From Inception to
Completion and Beyond, Proceedings CODATA 2002: Frontiers of Scientific and
Technical Data, Track I-D-2: Medical and Health Data, Montréal, Canada, October, 2002
[4] http://www.virtualrealms.com.au/vrml/tute01/tutorial.htm
[5] http://www.siggraph.org/education/materials/siggraph_courses/S98/18/vrml97/vrml97.htm
[6] http://vrmlworks.crispen.org/convert.html
[7] http://www.nhm.ac.uk/interactive/vrml/
[8] http://arrhythmia.hofstra.edu/vrml/museumn/museum.html
[9] http://www.narrativerooms.com/pogany/vr/index_a.html
[10] http://www.sciencemuseum.org.uk/wellcome-wing/splash_ns.html
[11] http://graphics.stanford.edu/projects/mich/
[12] http://www.vrmlsite.com/oct96/spotlight/qa/qa.html#use
[13] http://www.cnn.com/SPECIALS/multimedia/vrml/hurricane/
[14] http://www.isl.uiuc.edu/Cube%20Projects/VRMLView/vrmlview.htm
[15] http://www.isl.uiuc.edu/szg/doc/SceneGraph.html
[16] http://www.python.org
[17] http://www.perl.org
[18] http://www.ruby-lang.org/
[19] http://www.isl.uiuc.edu/Labs/room_b650.htm

 10

http://www.evl.uic.edu/art/index.php3
http://www.codata.org/codata02/07med/index.html
http://www.codata.org/codata02/07med/index.html
http://www.virtualrealms.com.au/vrml/tute01/tutorial.htm
http://www.siggraph.org/education/materials/siggraph_courses/S98/18/vrml97/vrml97.htm
http://vrmlworks.crispen.org/convert.html
http://www.nhm.ac.uk/interactive/vrml/
http://arrhythmia.hofstra.edu/vrml/museumn/museum.html
http://www.narrativerooms.com/pogany/vr/index_a.html
http://www.sciencemuseum.org.uk/wellcome-wing/splash_ns.html
http://graphics.stanford.edu/projects/mich/
http://www.vrmlsite.com/oct96/spotlight/qa/qa.html
http://www.cnn.com/SPECIALS/multimedia/vrml/hurricane/
http://www.isl.uiuc.edu/Cube Projects/VRMLView/vrmlview.htm
http://www.isl.uiuc.edu/szg/doc/SceneGraph.html
http://www.ruby-lang.org/

	Hank Kaczmarski, University of Illinois, Urbana-Champaign, Illinois USA
	Camille Goudesuene, Benjamin Schaeffer, Lance Chong, Rose Marshack, Lee Hendrickson, Jim Crowell, University of Illinois, Urbana-Champaign, Illinois USA
	Abstract

	VRML - Virtual Reality Modeling Language in CANVAS
	PYTHON AND MORE
	
	
	A Helpful Solution for Artists
	ACKNOWLEDGEMENTS

