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Distributed scene graphs are important in virtual reality, both in collaborative virtual

environments and in cluster rendering. Modern scalable visualization systems have high

local throughput, but collaborative virtual environments (VEs) over a wide-area network

(WAN) share data at much lower rates. This complicates the use of one scene graph across the

whole application.Myriad is an extension of the Syzygy VR toolkit inwhich individual scene

graphs form a peer-to-peer network.Myriad connections filter scene graph updates and create

flexible relationships between nodes of the scene graph. Myriad’s sharing is fine-grained:

the properties of individual scene graph nodes to share are dynamically specified (in CRR or

Python). Myriad permits transient inconsistency, relaxing resource requirements in

collaborative VEs. A test application, WorldWideCrowd, demonstrates collaborative

prototyping of a 300-avatar crowd animation viewed on two PC-cluster displays and edited

on low-powered laptops, desktops, and over aWAN.We have further used our framework to

facilitate collaborative educational experiences and as a vehicle for undergraduates to

experiment with shared virtual worlds. Copyright # 2006 John Wiley & Sons, Ltd.
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Introduction

How should we handle sharing of data across

collaborative virtual environments when sharing com-

plete data would lead to unacceptable performance

degradation? We describe an approach to solving this

problem; our implementation of this solution is called

Myriad.

Myriad achieves scalability for collaborative virtual

worlds by supporting: (1) peer-to-peer connectivity

using point-to-point communications; (2) fine-grained

sharing, controllable at the level of individual scene

graph nodes; (3) transient inconsistency; (4) self-

regulating feedback between peers; and (5) PC cluster

visualization. This paper uses ‘world’ and ‘scene graph’

interchangeably.

We call each scene graph, together with its network

connections and machinery for filtering update

messages, a reality peer. It is implemented as a Cþþ
object. Reality peers are analogous to constructions in

other distributed VR systems such as locales or

worlds.1,2 A reality map filters messages at each end of

the connection between reality peers (see the section on

fine-grained sharing). The reality peers in a given

network need not all have the same content. Each might

hold only part of a larger world, different versions of the

same world, or partially shared versions of a single

world. All these conditions create inconsistency. How-

ever, Myriad lets its users introduce, manage, and

remove inconsistency. Because this inconsistency is

tolerable, correctable, and even sometimes desirable, we

say that Myriad has transient inconsistency.

Virtual worlds are updated by various information

sources with different temporal properties. These

include the transform updates that move an avatar’s

limbs, the slow changes when a scene is edited, or the
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fast changing of amesh in response to a cloth simulation.

In Myriad, scene graph information flows through a

decentralized network of reality peers, which can be

configured to meet the demands of particular appli-

cations. Each peer in the network can filter or modify an

update to the scene graph before passing it on to other

peers.

Myriad builds on the last decade of work in

distributed and collaborative virtual environments,

particularly distributed scene graphs and update

message filtering.3 It supports asymmetrical network-

ing, computation, and visualization within a single

collaborative session. The filtering and transient incon-

sistency that make this possible enable another import-

ant tool for collaborative prototyping: namely, local

modification of a reality peer without propagation of the

change to other peers.

To create Myriad’s reality peers, we extended the

open-source VR toolkit Syzygy.4 This library contains a

distributed scene graph intended for tightly synchro-

nized display within a PC cluster. In Syzygy, a scene

graph application alters a local (server) scene graph

copy, producing a sequence of update messages. These

are sent to the cluster’s render computers, where client

scene graphs synchronize themselves with the server

copy. A Myriad reality peer is a generalization of the

Syzygy scene graph.

Any computer running Python can script or inter-

actively manipulate the network of reality peers. The

peers are thus building blocks for constructing ever

more elaborate virtual environments. Users can create

new peers, make and break connections between them,

and alter how those connections filter update messages.

Additionally, Myriad’s Python interface lets users

manipulate individual scene graph nodes within a peer,

even remotely.

These concepts are explored in WorldWideCrowd, a

collaborative prototyping application for assembling

avatar crowds. Our test case uses 300 avatars, each with

20 bones animated by 60 frame-per-second (fps)

motion-capture animation clips. The avatar animations

generate 360 000 scene graph updates per second in the

reality peers hosting the crowd’s pieces. In the current

unoptimized system, each bone update creates a

separate message containing a 4� 4 matrix, or about

100 bytes of data including themessage header. To view,

navigate, and collaboratively edit this scene over low

bandwidth WAN connections requires all of Myriad’s

features.

In addition to stress testing, our framework with

WorldWideCrowd,we have tried testing its usability. To

that end, Myriad has formed part of the curriculum of

two semester long classes.

PreviousWork

VR researchers have long studied Collaborative Virtual

Environments (CVEs). In general, CVEs conceive of a

virtual world or collection of worlds connected by

portals or othermechanisms and containing objects such

as human avatars, vehicles, buildings, or more abstract

visualizations of data. Additionally, some CVEs allow

variation between instances of a shared world, giving

rise to subjective views or local variations.5,6 CVEs differ in

the kinds of objects that are shared, how sharing occurs,

how objects are updated, and how local variations are

supported.

Some CVEs share domain-specific objects and infor-

mation: early versions of NPSNET,7 for example, were

tuned for vehicles or avatars. In contrast, Continuum8

and CAVERNsoft9,10 use general shared objects. A

middle ground is found in CVEs that share scene graphs

in a way suitable for generic tasks: DIVE,2,11 Repo-3D,12

Avango13 (formerly Avocado), and Distributed Open

Inventor.6 Myriad also shares data through a general

scene graph, so it is most closely related to these latter

systems.

Other differences involve how changes propagate

through a CVE. Updates might propagate from point to

point (reliably or unreliably), or via multicast for

scalability (DIVE,2 MASSIVE-2,14 NPSNET7,15). In each

of these cases, multicast groups are closely tied to shared

world structure. In DIVE andMASSIVE-2, specific scene

graph nodes correspond tomulticast groups, with nodes

below them shared in that group. NPSNET’s world is

regularly tiled by subworlds, each with its own multi-

cast group. In contrast, CAVERNsoft’s user applications

manually specify how object updates travel, for

example, over TCP, UDP, or multicast. Myriad also lets

updates use any transport mechanism, but it pays

special attention to point-to-point connections and

filtering thereon.

Multicast communications unfortunately present the

same packet flow to all peers, even if some require

updates at a lower rate. A peer might need reduced

sharing—particularly in the context of a very large,

active CVE such as WorldWideCrowd—because it

renders slowly, has less bandwidth, or has limited

update-processing power. Myriad handles such situ-

ations.
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MASSIVE-3 also addresses these concerns to some

extent.1 Its large virtual worlds are composed of locales.

Each local has multiple aspects. When a user connects to

a locale, bandwidth determines which aspect (how

much detail) the user sees. This subworld-level sharing

contrasts with Myriad’s finer-grained object-level shar-

ing and connection feedback, described below.

CVEs also vary in how they filter updates.MASSIVE-3

has been augmented with extensible message proces-

sing that uses deep behaviors, properties of an object that

control how it processes scene graph updates.3 For

example, changing how an object handles updates can

reduce the disk access cost of the object’s persistence.

Another change could let the object support reliable

transactions. Myriad’s message-filtering methods are

described in the section on fine-grained sharing.

Myriad’s reality peers and their connections form a

general network propagating scene graph updates. Each

peer may alter or even discard these updates in the

process of relaying them to other peers. The MASSIVE

systems connect virtual world databases more simply,

with paths in the connection graph of at most one hop

(from client database to server database).1,3 Its architects

may have considered erasing the distinction between

database clients and servers (making every node a

potential server), or using a tree of servers to efficiently

propagate changes via TCP.1 This second idea is similar

to the DIVEBONE, a network of special applications that

DIVE uses as an application-level tunnel for multicast

traffic through the internet.16 DIVEBONE inspired

Myriad’s network of reality peers, although Myriad

differs in its uniformity. Each object relaying or

processing scene graph updates is a full reality peer.

While Myriad does connect peers using Syzygy’s

connection broker (see the section on peer-to-peer

connectivity), this broker plays no part in the peers’

subsequent interaction.

Message processing determines the path updates take

through a CVE. For example, an update message might

have to travel to a server and back before effecting a

change in the database of the originating program. Even

multicast-based systems have this property, because this

property guarantees total ordering of world events and

thus world consistency. Repo-3D and Distributed Open

Inventor both have it to some degree. Unfortunately it

adds latency, creates a bottleneck at the sequencer, and

doubles bandwidth usage.

To avoid latency under these circumstances, pro-

grams like Repo-3D allow local variations in the shared

world; changes immediately affect the local copy before

taking effect elsewhere.12 This reduces interaction

latency among geographically dispersed participants.

Local variations can be more elaborate. DIVE can embed

completely different subjective views in a single world: a

viewing program displays one of several views.5

Distributed Open Inventor also has highly developed

support for local variations.6 In this case, unshared

subgraphs can be grafted onto a shared scene graph, or

several peers’ originally unconnected scene graphs can

be composed into a single scene graph by yet another

peer. Myriad’s transient inconsistency accomplishes

these things and generalizes previous work (see the

section on transient inconsistency).

Worldwidecrowd

Reality peer networks let us construct CVEs over

low-bandwidth networks; these can be experienced

and modified using a wide variety of devices. In the

WorldWideCrowd application (Figure 1), we can

collaboratively edit the crowd in real time over a

WAN by sharing avatars’ geometry and positions but

not their animation clips, even though the aggregate

scene graph updates exceed the WAN’s capacity. Each

site can separately generate crowd motions, or motions

of small sets of avatars can be shared, with the degree of

sharing under user control. This methodology works

equally well in the presence of other bottlenecks, for

example, the underpowered (CPU-bound) displays on

laptops and PDAs. Figure 1, 3 and 5–8

In WorldWideCrowd, we edited a shared world

containing 300 segmented avatars. The entire crowd

could not run on a single computer because of bottle-

necks in processing scene graph updates and sending

them over the network. Consequently, each of six crowd

pieces ran within a reality peer on a different computer

(a simulation cluster). For high-end visualization, there

were two PC cluster displays, a 3� 2 video wall and a

six-sided CAVE (Figure 2).17 The video wall was driven

by an assortment of PCs, mostly 1GHz Pentium-IIIs

with GeForce 2 graphics cards. Switched 100Mbps

Ethernet connected these resources, with 1Gbps within

each visualization cluster. In addition, a workstation

near the video wall and a wireless laptop near the CAVE

let users interactively change the CVE from the Python

interpreter. Inside the CAVE, a participant navigated the

world in standard VR fashion; another participant

panned and zoomed the video wall from a desktop

interface. Finally, a remote user manipulated the CVE

over an 800-mile 10Mbps link.
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The video wall provided an overhead crowd view.

Due to the variation in speed of the PCs powering its

displays, OpenGL buffer swaps were not synchronized.

When the crowd uniformly covered all six displays,

frame rates were 10–25 fps, and the visualization cluster

processed about 80 000 scene graph updates per second.

This was sustained while panning across the scene and

zooming the camera in and out. The overall update rate

was limited chiefly by the video cards and secondarily

by the 100Mbps link between the video wall and the

simulation cluster.

A cluster of six PCs, with genlocked video cards for

active stereo, drove the six-sided CAVE (Figure 3). This

let users navigate through the crowd at ground level.

The buffer swaps of the wall displays were synchro-

nized and a special reality peer (a synchronizing peer)

mirrored its scene graph state in each display. The

CAVE graphics cards were more powerful than those in

the video wall, but they still constituted a bottleneck at

�24 stereo fps. The synchronizing peer consumed

�24 000 updates/second; due to the animation culling

mentioned above, this is much less than the quantity

Figure 2. WorldWideCrowd: the validation configuration.

Figure 1. A VR view of stylized segmented avatars in the WorldWideCrowd prototype.
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produced by the whole crowd. As a whole, the cluster

processed about 165 000 scene graph updates/second.

We also displayed the ground-level VR view on a 3� 2

video wall, using a synchronizing peer. View-frustum

culling let the video wall display about 40 monoscopic

fps (depending on the precise point of view), even with

2002-era video cards. Again, the graphics cards and not

the networking or update processing limited the frame

rate.

The CAVE, the video wall, and the simulation cluster

produced and exchanged the vastmajority of scene graph

updates. The total traffic for all reality peers within the

core system was about 600 000 updates per second, with

the CAVE cluster accounting for 165 000, the simulation

computers 360 000, and the video wall 80 000.

Under some circumstances, reality peers outside the

core described above would send avatar animation

information into the system. For instance, users gave a

particular avatar (or even a whole set of avatars)

different animation clips than those shared globally.

This local variation was accomplished by running a

reality peer that streamed the desired clips, connecting it

to the desired display peers, and turning off the

transmission of avatar limb updates from the core

simulators. Thus, the local animations had no net effect

on overall network usage. If the users liked the new

animation, they could easily push it into the core

simulation for others to see.

This construction also benefits CVEs that include a

slow network link. InWorldWideCrowd, the simulation

cluster’s avatar-animation programs choose animation

clips based on the contents of special info nodes in the

scene graph. Thus, simulation clusters on each side of a

slow link can both drive their respective crowds even if

this link does not stream animations (each cluster stores

a local copy of the animation clips). A collaborator over a

WAN who cannot stream the full crowd animation can

still share the animation clip names embedded in info

nodes and thus influence both simulation clusters.

In our test of WorldWideCrowd, users also changed

avatar geometry in the globally shared world or in their

own local variations. Avatar geometry in a given reality

peer was changed either by merging geometry from a

file through that peer’s RPC interface (see the section

on peer-to-peer connectivity), or by manipulating its

scene graph from the Python prompt. If users liked the

avatar’s new appearance, they could push it into the

globally shared world and update the other sites. If not,

they could restore their peer’s original appearance from

the shared world.

Users moved avatars by manipulating local copies of

transform nodes inside their peers from the Python

interpreter, with scripts and 6DOF tracking devices

(Figure 4). In the latter case, a manipulator object used

the tracker input to modify the transform node’s

contents, changing the avatar’s position, orientation,

and scale. As with other operations, changes in avatar

position could be performed locally and then either

shared or discarded.

ClassroomCollaboration

Following the success of the WorldWideCrowd appli-

cation, which tests Myriad’s scalability, we adapted our

framework to an educational setting. The Python tools

mentioned in the previous section formed the base upon

Figure 4. Avatar manipulation.

Figure 3. WorldWideCrowd: two walls of the six-sided PC

cluster CAVE.
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which we built specialized environments for teaching

concepts in mathematics and computer graphics. For

this use of Myriad, we had a room full of networked

workstations, which additionally, contained a compu-

ter/projector combination that displayed a shared

reality peer (Figures 5 and 6). For each educational

exercise, the pattern was the same. Students would

wrestle with a problem individually at their own

Figure 5. Classroom collaboration: systems diagram.

Figure 6. Student application: roller coaster.
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computers but have the ability to push their solution out

to the projector’s shared view or pull in information

from one of their colleagues.

MeshModeling

In this exercise, the students must create a mesh

illustrating some mathematical concept. At an elemen-

tary level, they might create a conic section, while, at a

more advanced level, they might make an isosurface for

a given scalar data field. The Syzygy graphics database

provides a standard format for the mesh information,

the coordinates of its vertices, the arrangement of those

vertices into triangles or triangle strips, and so on.

Myriad’s reality peers allow the students to share their

work in progress with the group. Each student adds to

her mesh interactively using Python.

Once a student has built an initial mesh in her own

reality peer, she can transfer a copy into the peer

displayed through the projector. There, anyone in the

class can manipulate it, via rotating it, zooming it,

removing geometry, or changing the existing geometry’s

coloration. As more students publish their attempts, the

instructor can lead the class through the different

solutions, commenting on the relative success or failure

of each. Those who were unable to generate the mesh

correctly can pull a successful example back from the

shared space into their own peer and use it as a template

for further investigation.

Myriad makes more complex collaborations possible.

An ad hoc subgroup of students might decide to work

together, sharing their meshes only between one

another’s reality peers and waiting until all agree that

they have a solution before pushing it out to the peer

shared by the entire class. Since an individual student

can have multiple versions of the mesh in her peer,

each student can participate in several subgroups

Figure 7. Hypervisor: managing the Syzygy clusters.

Figure 8. Reality mapping: the relationship between nodes of

connected scene graphs.
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simultaneously, limited only by her ability to keep track

of who is doing what and by the power of her

workstation to render geometry. Within her reality

peer, she can, for instance, arrange her mesh versions

independently of her classmates, allowing her to control

her overall perspective on the problem.

Finally, in addition to publishing static copies of their

meshes, the students can choose to share their work as it

progresses in real-time. As a student works on getting

the mesh just right, she might iteratively make small

modifications here and there. Another student can copy

that portion of her colleague’s peer containing the mesh

and elect thereafter to receive those modifications as

they are made, thus being able to (metaphorically) look

over her classmate’s shoulder from the comfort of her

own reality peer on her own workstation.

The scripting environment supports these activities by

automating several interactions with the underlying

Myriad system. Students can query the reality peer

network to find out what meshes exist to be shared and

the peers in which they are located. Such searches also

reveal the owner of each mesh, comments about it, and

its descriptive name. Scripts support taking a mesh

snapshot and transferring it into another reality peer,

either ensuring future changes are transmitted or

immediately breaking the connection between the copy

and its original. Since this exercise requires students to

examine andmodifymeshes they have not created, there

are scripts for browsing the scene graph structure of a

mesh and extracting data, such as vertex lists or

coordinates, from the individual scene graph nodes.

Finally, in order to allow the lesson to extend across

multiple days, there are tools for moving mesh snap-

shots to and from disk.

AWorldwith InterlockingParts

For this exercise, the collaborative task is more complex.

The students must create a world with multiple

independent parts, each of which is animated by a

separate program, but whichwork together as awhole. A

simple example is a physics-based simulation of N balls

traveling through a maze, bouncing off the walls. Amore

complex example is a simulation of a sequence of gears,

where turning the first causes the others to turn as well.

Each student is responsible for a subset of the world’s

geometry along with its physics. In this exercise, the

shared reality peer displayed by the projector shows all

of the independent parts working together. At check-

points of the world’s collaborative development, the

students transfer geometry from their local reality peers,

possibly overwriting objects they have previously

transfered. Furthermore, from time to time, a student

will attach her animation scripts to her piece of theworld

inside the shared peer. These scripts cannot only

animate her geometry but also that of the other students,

as is necessary to handle, for instance, collisions between

geometry in different peers.

Each student can work in isolation, within her local

reality peer, on the physics expressed by her animation

scripts, but she will invariably confront obstacles when

trying to compose her work with that of the others. For

instance, one of the objects animated by student Amight

penetrate one of the objects created by student B.

Perhaps A was working with an old copy of B’s models,

having pulled them from the shared reality peer before B

published changes. While the students could avoid this

situation by exclusively working with the shared peer or

by having their local peers continuously receive updates

from those of their classmates, this methodology has

drawbacks as well. Physics routines are difficult to

program because of numerical instability, and, as a

consequence, it is advantageous to keep their effects

from the shared environment until they have been at

least partially debugged.

Since the pieces of the shared world are, in fact,

dependent on one another, Myriad must support a

protocol through which different scripts, when operat-

ing on the same scene graph nodes within a peer, can

cooperate with one another. An elementary example

occurs during object collisions. When a script detects a

collision involving an object it controls, the script should

temporarily take control of the second object as well,

altering its position and velocity according to the

collision algorithm. A more sophisticated example

occurs if one object can grab another, as with a simulated

manipulation tool. Myriad implements these behaviors

via scene graph node locking, unlocking and notifica-

tions. Script A can lock the scene graph node controlling

the position of an object, ensuring that only A will alter

the object’s position while it holds the lock. Script B can

register to receive a notification when A unlocks the

object, at which point it can get the lock itself. In this

way, scripts can cooperatively hand control of a shared

object from one to another.

Student Applications

Building on the tools created for WorldWideCrowd and

our collaborative education environments, students
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participating in a University of Illinois REU (Research

Experiences for Undergraduates) wrote several

new-shared worlds using the Myriad framework. Their

work further validates our framework as a practical tool

for shared world construction. There are trade-offs, after

all, between providing more power/options to the user

andmaking the resulting system too unwieldy for all but

experts. We feel that our Python tools, as a layer on top

of raw Myriad functionality, implement the simplifica-

tions that make Myriad accessible.

The first application is a roller coaster constructor.

Here, multiple users collaborate in laying down knot

sequences that define roller coaster tracks via splines.

The world can contain multiple coaster tracks, different

users canmodify each of the tracks bymoving the knots,

and the individual coaster trains start and stop at the

user’s command. Also, as the coasters run, users can

choose to ride any of them, switching freely between the

train’s local viewpoint or a global viewpoint floating in

space outside all tracks. The roller coaster constructor

demonstrates free-form creation and collaboration.

The second student application is an animation

application through which users pose a series of

humanoid and equine figures and construct the simple

virtual world in which they exist. The animations are

created frame by frame via attaching a manipulator to a

particular bone in a skeleton hierarchy, moving the

bone, going to the next one, moving it, and so forth, until

the new pose is complete. Sequences of these poses can

be saved, spliced together, diced apart, and applied to

different models inhabiting the shared world. This

contrasts with WorldWideCrowd in that, there, the bulk

of the application concerned arranging canned anima-

tions in an aesthetic fashion, and the tools we

constructed for it were mainly for managing scalability.

Here, the collaborative process of creating an individual

animation is emphasized.

ClusterHypervisor

Before moving on to a detailed description of Myriad’s

internals, some practical considerations should be

addressed. There are several issues with deploying

Myriad in a production environment. Our organization,

the University of Illinois’ Integrated Systems Lab, has

three immersive virtual environments powered by PC

clusters, called CUBE, CAVE (following the term coined

by EVL), and CANVAS. The CUBE is used for

psychology experiments, the CAVE for tours and

demonstrations, and the CANVAS is a permanent VR

art exhibit in the campus artmuseum. Each visualization

cluster is managed by a separate instance of the Phleet

distributed OS (with its kernel an szgserver), as

described in the initial Syzygy paper.4

While these environments are mostly used for their

respective functions, we sometimes want to deploy

Myriad-based applications across all of them simul-

taneously. This must occur without disrupting their

normal operations. Since different staff are responsible

for each cluster, they have different maintenance

schedules, and one of them (CANVAS) has intermittent

network connectivity (due to its location at the art

museum), joining all three visualization clusters into a

single ‘metacluster’ running one instance of the Phleet

OS is inconvenient. However, in order to run a Myriad

application across all of them, this is exactly what needs

to happen (Figure 7).

Consequently, we developed a simple approximation

to hypervisor technology for Syzygy. Normally, a

hypervisor is a software component that allows multiple

operating system to run simultaneously on a given

computer. In our case, the hypervisor allows multiple

distributed operating systems to share a cluster. Each

cluster participates in two instances of the Phleet OS.

One instance works locally for that cluster only (there

are three Phleet instances like this) and a fourth Phleet

runs across all the clusters at once, making Myriad

applications that utilize all three clusters possible.

The Phleet hypervisor prevents these OS instances

from interfering with one another by hooking into the

application-launching interface. Normally, the Phleet

running a particular cluster knows whether an appli-

cation is running and whether needed resources like

tracking or sound are available. When a Myriad-based

application is launched, the launcher first contacts the

hypervisor, which in turn, contacts the Phleets on the

individual clusters and has them shut down any

running applications. After this has occurred, the

launcher is informed and begins using the ‘global’

Phleet to run the Myriad application. The reverse

happens when going from metacluster Myriad to single

cluster application.

Myriad Scene Graph

Now that we have described some of Myriad’s

applications and the practical challenges to deploying

them, we shift to an in-depth examination of the

technical features that make the applications themselves

possible.

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Copyright # 2006 John Wiley & Sons, Ltd. 9 Comp. Anim. Virtual Worlds 2007; 18: 1–17

DOI: 10.1002/cav

MYRIAD: SCALABLE PEER-TO-PEER VR VIA TRANSIENT INCONSISTENCY
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *



Each reality peer contains a Syzygy scene graph

whose node types correspond to OpenGL commands.

Nodes can store geometry (vertex arrays), 3D trans-

formations, texture maps, OpenGL materials, etc.4

Myriad extends Syzygy by adding an info node which

stores a string and can add semantics to a scene graph,

similar to MASSIVE-3 and DIVE.1,11 Each node has an

ID, unique within its owning scene graph; the scene

graph uses this ID to route messages generated when

nodemethods execute. Each node also has a name that is

not necessarily unique. As shown below, node names

help construct the reality maps between nodes in

different peers (Figure 8).

Myriad adds a newproperty to all Syzygy scene graph

nodes: sharing level. Its value can be transient, stable-

optional, or stable-required. The application marks a node

as transient if its value changes rapidly over time;

stable-optional if its value remains more or less fixed but

is not critical to the proper functioning of the

application; and stable-required if its value is critical.

A node’s sharing level affects how reality maps treat it

(see the section on fine-grained sharing) and how its

updates are dynamically filtered before propagating to

connected peers (see the section on peer connection

feedback). Nodes with transient sharing level are called

transient nodes.

Peer-to-Peer Connectivity

When a reality peer starts, it registers a service with a

connection broker provided by Syzygy. This broker

gives the peer a unique ID for subsequent processing of

the update stream passing through it. Other peers can

query the broker’s service registry, retrieve a list of

peers, choose a peer by name, get its IP address and port,

and then connect directly to it. Each reality peer listens

for update messages on its various connections, then

filters them and passes them on. While arbitrarily

complex networks are possible, several simple con-

structions illustrate important Myriad features: push

peers, pull peers, feedback peers, and shadow peers.

WorldWideCrowd uses all of these.

A pull peer connects to a remote peer and synchronizes

its scene graph with a subgraph of the remote peer.

Thereafter, it receives updates from the nodes in the

remote subgraph but does not send any of its own. In

WorldWideCrowd, this let us build a new crowd that

tracked the evolution of an existing one but within

which we could make local changes (e.g., adding

avatars) without modifying the original. A pull peer

might even elect to receive updates from particular

remote scene graph nodes: For example, ignoring

updates from transient nodes greatly decreases band-

width requirements.

A push peer connects to remote peer(s) and synchro-

nizes its own scene graph with a subgraph in each

remote peer, afterwards sending updates but not

receiving them. The push peer affects the remote peers

without itself being affected. In WorldWideCrowd, the

crowd animation and user navigation programs

embedded push peers.

A feedback peer synchronizes its scene graph with a

subgraph in a single remote peer upon connection and

subsequently exchanges updates with it. In WorldWi-

deCrowd, feedback peers allowed collaborative editing

of a shared scene graph. A shadow peer is a special kind of

feedback peer that shares scene graph structure (a

relatively small amount of data) but not the contents of

the nodes. A shadowpeer quickly synchronizes its scene

graph structure with a remote peer, even over a

low-bandwidth link. In WorldWideCrowd, shadow

peers were useful for editing scene graphs over the

WAN.

Scriptability is useful in creating large-scale distrib-

uted applications such as WorldWideCrowd. To this

end, reality peers implement an RPC interface for

loading and saving scene graph information, managing

connections, and adjusting the sharing along each

connection. The simplest way a peer joins a collection

of peers is by being part of an executable program. The

program containing the peer can alter it directly. But

more powerfully, a peer can be part of a workspace, a

generic container for peers. A workspace can contain

many peers, render their scene graphs, and be controlled

remotely through RPC. Workspaces avoid the prolifer-

ation of ad hoc executables, one per peer.

Fine-Grained Sharing

Fine-grained sharing lets peers control information

sharing at the level of individual scene graph nodes.

This section describes its three functional components:

message filtering, reality mapping, and node locking. These

features let peers support local variations, adapt to

low-bandwidth network links, and combine with other

peers to form larger virtual worlds.

Myriad’s message filtering is inspired by recent

incarnations of MASSIVE, but unlike MASSIVE’s deep

behaviors Myriad’s filters are properties of connected

pairs of nodes and peers, not of the nodes themselves.3
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Also, Myriad’s fine-grained sharing contrasts with

MASSIVE-3’s coarse-grained locales and aspects, which

are essentially entire scene graphs.1

A reality map relates two peers’ scene graphs. It is

stored on each side of the peer connection, associates

remote node IDs with local ones, and determines if a

given local node is mapped remotely. Updates to a scene

graph node are propagated to mapped nodes in

connected peers via a message filtering system, as

outlined below. Distributed Open Inventor has a similar

construct, except that its shared subgraphs have

identical structure (only the location of the root node

changes).6

Consistency requirements are relaxed in Myriad,

stipulating only that if node B is a descendant of node A

and both map into a connected peer, then B’s image is

also a descendant of A’s image. This allows unmapped

node insertions within either of the corresponding

(mapped) subgraphs, facilitating fine-grained local

variation. For example, a peer could locally insert a

transform node and add unshared rotational motion to

an object’s shared translational motion, or it could

locally recolor a uniformly-colored group of shared

objects by inserting local material nodes.

Another important element of fine-grained sharing is

node locking, which maintains consistency across peers.

Suppose A and B are connected peers. Peer A can take

one of its scene graph nodes and lock changes on

mapped nodes in connected peer B. Subsequently, Bwill

ignore updates to these nodes that do not come from A,

allowing A to make changes deterministically. Locking

is implemented cooperatively: Any peer connected to B

that holds a mapped image of the locked node can take

the lock from A and unlock it.

The following sequence of events occurs each time an

update message reaches a reality peer: First, each

message checks its history of peers it has updated; a

message revisiting a peer that has been already updated

is discarded in order to prevent infinite loops. Next, the

reality map associated with the message’s incoming

connection changes the update message’s embedded

node ID to the ID of the mapped local node, or discards

the message if no such node exists. The message is also

discarded if the destination node is locked by a peer

other than its originator. The user can define a set of

message filters for each node and peer-connection pair;

these are applied before the update message is sent to its

destination node in the local scene graph.

After updating the local node, the peer executes the

following actions for each outgoing connection. First, the

message is discarded if the local node maps to a

transient node in a remote peer and it is too soon to send

a fresh update (based on the remote peer’s update rate,

see the section on peer connection feedback). Then

another sequence of user-defined message filters is

applied, and the message is forwarded if no filter

discards it.

The reality map between two connected peers can be

built in two different ways. One peer can create a new

copy of its scene graph in the other (but rooted at an

arbitrary remote node), or it can attempt to associate

local nodes with remote ones. In either case, the sending

peer tells the receiving peer that it is constructing a

reality map and specifies a remote node to be its root.

This map has an associated sharing level that affects its

construction based on each node’s sharing level. The

sending peer traverses the scene graph below the root

node it had specified. It sends a node creation message

for each node traversed; if the node’s sharing level is no

less than the map’s sharing level, the sending peer also

sends a node state serialization message. The node

creation messages extend the reality mapping in the

receiving peer, either by creating new nodes (as when

building a copy) or by trying to associate the sending

peer’s node with an existing node in the receiver.

Consider a map trying to associate existing nodes on

the receiving peer with nodes on the sending peer. The

node creation message contains the name and type of

the ‘created’ node and the ID of its parent node. The

receiving peer discards the message if its reality map for

the connection cannot translate the parent ID to that of

one of its own nodes. Otherwise, the receiving peer

searches depth-first below the mapped parent for an

existing node with the same name and type as specified

by the creationmessage. If it finds such a node, it extends

the reality map to include this node and the creation

message is discarded; if not, a new node with the

specified name and type is created as a child of the

mapped parent and the receiving peer’s reality map is

updated. In either case, the receiving peer returns a

message to the sender describing the newly created

extension for the sending peer’s reality map. A reality

map automatically extends itself over time, with new

children of mapped nodes in one peer making new

mapped nodes in the other peer.

The reality-mapping algorithm only depends on

nodes having unique IDs, not unique names. Thus,

the names can encode useful structural information. For

example, the avatar skeletons in WorldWideCrowd

all contained a standard set of node names, making

it easy to associate nodes of an avatar in one peer

with those in another. This standardization allowed
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WorldWideCrowd users to easily replace any avatar

body with any other embedded in another peer.

Reality maps have several useful properties besides

supporting local variations. They support creation of

larger virtual worlds by combining the scene graphs

from a group of peers inside a single peer. They enable

sharing of a small part of a peer’s scene graph with

connected peers; combined with message filtering, this

facilitates low-bandwidth collaboration. In particular,

reality maps support dynamically modifiable sharing,

because a user or application need not decide in advance

how to divide a peer’s scene graph into sharing units; the

user can limit shared data to precisely the area of interest

at any given moment.

Peer Connection Feedback

If several reality peers participate in a multicast group,

all peers see the same updates. This is good for similar

peers; however, peers’ resources and capabilities might

vary substantially. For example, peers on a LAN or a

high-speed WAN might have good network connec-

tivity among themselves but much less to a peer outside

their subgroup. Furthermore, peers may display their

virtual worlds at different frame rates. If each peer

receives the same scene graph updates, slower peers

waste time processing updates only needed by faster

ones.

Myriad uses feedback to adjust the message flow

along peer connections, dynamically adapting to chan-

ging peer networking and graphics performance. Feed-

back messages regulate the data transfer between

Myriad’s reality peers by controlling the filtering of

scene graph updates to transient nodes (recall the

section on scene graphs). A reality peer can send its

preferred update rate to connected peers. This preferred

update rate might match its graphics frame rate (which

would be sent automatically), or it might explicitly

throttle incoming bandwidth, foe example, requesting

only one update per second. Each reality peer stores the

update rate requested by each connected peer and

updates transient nodes no faster than the requested

rate.

If a reality peer’s primary function is to render its

scene graph, transient node updates matter only for

nodes likely to be viewed. Consequently, the user can

configure a peer to automatically test whether particular

subgraphs of its scene graph are within a certain

distance of the viewing frustum. Connected peers alter

the relevant realitymaps so as not to send transient node

updates to subgraphs that fail this test. The reality maps

are restored when the subgraph passes the test. Under

this scheme, all viewed transient nodes contain timely

values, if user travel speed is bounded. Specifically,

when a subgraph approaches the viewing frustum, one

message round trip to a connected peer must occur

before the subgraph will again get updates from that

peer. Thus, the speed limit is equal to the user-defined

proximity threshold divided by the maximum ping time

to a connected peer. Myriad does not enforce such speed

limits; it accepts that inconsistencies can arise. Devel-

opers may of course enforce speed limits in particular

applications.

Connection feedback was critical for WorldWide-

Crowd. Without it, the video wall could not smoothly

pan the overhead view, nor could a CAVE user navigate

seamlessly through the whole crowd.

Transient Inconsistency

We treat consistency as a local property of connections

between peers, not as a global property of thewhole peer

network. Consider subgraphs in each of two connected

peers that are reality-mapped onto each other. We call

the subgraphs consistent if they have identical structure

and all pairs of mapped non-transient nodes have the

same values. If the full scene graphs in both peers are

consistent, we say that the connection itself is consistent.

Connected reality peers need not have consistent scene

graphs, though configurations of reality peers may have

varying degrees of guaranteed consistency (see the

discussion of locking in the section on peer-to-peer

connectivity). Myriad reduces its use of networking

resources and facilitates virtual world prototyping by

allowing linked but inconsistent versions of a world.

However, some degree of consistency is obviously

needed for collaboration and communication. Consider

two inconsistent subgraphs in connected reality peers,

neither of which is currently being altered by the

application or by user input (although they may be by

Myriad itself). Myriad provides an API for launching

consistency processes, background tasks that modify the

subgraphs in the direction of consistency. We call this

effect transient inconsistency.

Transient inconsistency imposes fewer resource

requirements on a CVE than does strict consistency.

For example, a substantial but intermittent resource

strain occurs when new users join the virtual world; this

resource strain is dubbed the late-joiner problem. In many

CVEs, all updates pause while the world state transfers
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atomically to the newcomer. This freezes all viewers for

a substantial fraction of a second, even if the world state

is only a few megabytes and the LAN has 100Mbps

speed. Usability significantly deteriorates on a slower

WAN with frequent newcomers. While atomic state

transfer ensures that all users always see the same

world, it limits scalability. By allowing gradual, non-

blocking background transfer of world state, Myriad

eliminates these delays at the cost of temporarily

presenting different pictures of the world to different

peers.

Myriad solves the late-joiner problem with a consist-

ency process that uses reality maps. When a peer maps

part of its scene graph into another peer (transferring

world state), it does so in the background and without

locking the whole scene graph. The originating peer

traverses its scene graph depth-first. It maps nodes,

transferring node state according to the map’s sharing

level (see the section on peer-to-peer connectivity); we

call the consistency process strict if every node’s state is

transferred. Non-strict consistency processes need less

bandwidth. For example, if a user needs to manipulate

only the structure of a scene graph, node creation

messages suffice to map it to a remote peer: no internal

node state needs to be sent.

The application controls the mapping’s traversal rate

so that state transfer does not overload network or CPU

resources. New node updates are interleaved with

state-transfer updates, so the transfer may be greatly

prolonged without impacting usability. Once a node has

beenmapped, its future updates are immediately sent to

the connected peer; the reality-map filtering discards

updates to nodes that haven’t been mapped yet.

Can we prove that inconsistencies during a strict

scene graph transfer are, in fact, transient? Suppose that

the new nodes in the target scene graph remain

unaltered during the mapping (if they change, a

subsequent consistency process can reconcile them).

After themapping finishes, unless nodeswere created or

deleted in the original scene graph during the mapping,

the new scene graph must be consistent with the

original. This bounds the duration of inconsistencies; in

other words, the inconsistencies are transient.

Node creation and deletion in the originating scene

graph are also acceptable. Myriad handles node deletion

like any other update. Suppose a node in the original

peer is deleted during the mapping. If it has already

been mapped, the update message deleting it is passed

on as well, deleting the node’s image. If it has not been

mapped, the delete message is not sent to the connected

peer, which will never have a corresponding node

because no local copy now exists tomap to. (The order of

messages from one peer to another is preserved. Thus, if

a node is created and soon deleted, its creation and

deletion messages cannot be reversed in transit and

thereby confuse the receiving peer.)

The scene graph transfer similarly allows interleaved

node creation. If a new child node is created before its

parent has been mapped, the message adding the child

is discarded by the sending peer’s outbound filter. Later,

running in the background, the consistency process will

map the parent and then the child. Otherwise, the child

is created after the parent has been mapped and is

immediately added to the connected peer.

Myriad’s solution to the late-joiner problem is similar

to MASSIVE-3’s, where state transfer to the late joiner

also occurs in the background without locking the scene

graph and freezing other users.1 However, MASSIVE-3

sends a full scene graph to the new user before sending

new updates, whereas Myriad interleaves new updates

with the initial state transfer.

In addition to supporting incremental background

transfer of scene graph information to late joiners,

Myriad’s consistency processes also reconcile existing

inconsistent subgraphs in connected reality peers. Once

users have stopped altering the subgraphs, a back-

ground consistency process will eventually make them

consistent. At its most stringent, the consistency

process’s goals are: (1) mapped nodes on both sides

of the connection should have the same values; (2) every

node should map to some remote node; and (3) every

remote node should map to some local node. Under

these circumstances and when not competing with user

changes, an inconsistency’s lifetime is bounded by how

quickly the consistency process traverses the scene

graph, which depends on assigned CPU and networking

resources.

An important type of inconsistency is a local variation

or subjective view. This may be long lasting, since users

specifically create it to, for example, compare different

versions of a world. These features are supported in

CVEs like Distributed Open Inventor6 and DIVE.5

Myriad supports analogous constructions, tolerating

inconsistencies and providing a means to reconcile

them.

DIVE’s subjective views assume that each shared view

is simultaneously available to all participants. This

single shared world can become a bottleneck when

many subjective views exist, even if the world is static. If

each shared subjective view generates many updates,

these can strain the network because they are forced into

a single multicast group and sent to every peer.
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This case occurs in practice. In WorldWideCrowd, a

common local variation was to animate a collection of

avatars with new animation clips not available on the

simulation cluster. It would have been expensive to

transmit all of these variations to every peer, since each

variation used substantial bandwidth. Myriad can

partition scene graph updates so that they go only

where needed, reducing required bandwidth. Its

transient inconsistency let users locally evaluate anima-

tion clips, and then either change the global shared state

on acceptance of a clip, or revert to the global state if they

rejected the clip.

PCClusterVisualization

Many researchers have created cluster graphics

solutions in the last few years, such as Chromium18

(formerly WireGL), Cluster Juggler,19 and Syzygy.4

There are various cluster visualization situations. Visual

quality might be the most important consideration,

requiring all screens to display the virtual world

synchronized frame-by-frame. On the other hand,

synchronization might be sacrificed in order to display

as much information as possible at one time.

When displays must be synchronized, the slowest

graphics cards limit the overall frame rate, though

view frustum culling can ameliorate this. Myriad’s

cluster synchronization scheme routes all update

messages through a central synchronizing peer. This

peer ensures that each render PC’s drawn scene graph

is identical to the others in each frame, achieving this by

synchronizing their buffer swaps and their consumption

of update messages.4 Unfortunately, processing this

many updates can create a CPU bottleneck at the

synchronizing peer. A 3GHz Pentium-IV processes

about 400 000 scene graph updates per second, which is

similar to the update rate of the 300-avatar crowd.

Network utilization at the synchronizer is also a

problem.

Consequently, the overhead view in WorldWide-

Crowd, which required maximum scalability, was not

synchronized frame by frame. Instead, the video wall’s

reality peers displayed scene graph updates as they

were received. The overhead view helped to partition

the drawing and message processing among the peers,

increasing each one’s potential frame rate. This loose

synchronization among screens let each render PC

connect separately to the crowd simulation peers, and to

a navigation controller for panning across and zooming

around the scene. This worked well despite the

performance differences between the video wall PCs,

as shown in a slow zoom into the crowd (Figure 9).

However, frame synchronization was needed for the

CAVE PC cluster’s active stereo projectors (alternating

left- and right-eye frames). The peers defining the crowd

of avatars changed as users joined the world and edited

it. It would be tedious, whenever this changed, to update

every CAVE display PC’s list of peers. The insertion of a

synchronizing peer decoupled where the world’s total

scene graph originated, from how that scene graph was

displayed. This was because Myriad’s sharing of

subgraphs is a property of individual pairs (in this

case, ‘editing peer’—synchronizing peer pairs and

synchronizing peer—‘display peer’ pairs). Changes

outside the CAVE cluster are hidden from the cluster

itself. In contrast, sharing is a global property of

subgraphs in Distributed Open Inventor. While an

application’s scene graph can be composed of any

Figure 9. WorldWideCrowd: a smooth zoom into the crowd.

Three steps in a time series.
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number of separately shared and unshared subgraphs,

the overall scene graph is not transparently shareable.

Interactionwith the Python
Interpreter

Users can interact with Myriad from Python at two

different levels. The first involves manipulating Myr-

iad’s distributed system at a high level, managing

workspaces, reality peers, and their connections. A

collection of Python proxy objects for these entities lets

users manipulate them from anywhere in the network

via an RPC interface. This makes it easy to set up, tear

down, and manage a distributed application like

WorldWideCrowd. The RPC interface is also useful

for creating ad hoc workflows. For example, a user

might experiment with local variations of the scene

graph contained in a particular reality peer. A Python

script can start several new peers on different compu-

ters, each a pull peer (defined in the section on

peer-to-peer connectivity) with respect to the original.

These new peers can be altered to create new scene

graph versions; if they run on different computers, each

will run with high performance, simplifying compari-

sons. The user can automate killing views that are no

longer needed via the same scripting interface. They can

also remotely serialize any peer’s scene graph and save it

to a file, thus preserving intermediate prototypes.

The second level of interaction is direct manipulation

of Syzygy/Myriad objects, such as the reality peers and

their scene-graph nodes. We use SWIG-generated

Python wrappers for these objects, letting them be

created at a Python prompt or from script. For example,

a user can start a reality peer from a Python prompt and

connect it to another as a feedback peer (see the section

on peer-to-peer connectivity). The user can then alter the

remote peer’s nodes by changing mapped nodes in the

local peer from the Python prompt, encouraging free-

form experimentation.

Each scene graph node’s complete Cþþ interface is

available from Python. The user can set material

properties, alter lighting, change transform matrices,

and even move individual points within triangle

meshes. The Python bindings let users connect 6DOF

input devices to transform nodes in local peers, with

special manipulator objects forming the bridge and

providing a rudimentary interface for the interaction

(Figure 4). Mapping the local transform node to a remote

peer enables manipulation of any transform node in the

peer network.

FutureWork

This work can be extended in many ways. We could

explore system performance on modern hardware:

Experiments indicate that two 3GHz Pentium compu-

ters with recent GeForce FX graphics cards can transfer

and display a 50-avatar crowd over a 100Mbps link at

40 fps, processing 40 000 scene graph updates per second

on the display end. We could measure performance on a

modern six-node display cluster connected by a gigabit

switch to a modern six-node compute cluster. On such

hardware, Myriad might animate 1200 avatars at

interactive frame rates. Furthermore, while the Myriad

application described in this paper was fairly large,

comprising 22 computers for the full WorldWideCrowd

demo,we have yet to see howMyriad scales to hundreds

or thousands of computers. Such a system would

harness supercomputer-level power for virtual worlds.

A practical use for such power would be real-time

visualization and collaborative prototyping of large,

data-intensive worlds for the movie industry.

Optimizing the underlying scene graph could signifi-

cantly increase rendering speed. Vertex programs

running on programmable GPUs might accelerate deep

scene graph traversals associated with, for example,

segmented avatars. Furthermore, Myriad’s scene graph

update messages are unnecessarily general in some

cases; for example, it sends a 4� 4 matrix to control each

avatar bone instead of three Euler angles. The latter

approachwould reduce bandwidth at a cost of increased

computation to reconstitute the rotation matrix for

OpenGL. Experiments would help in understanding

these trade-offs.

Myriad’s frame-synchronizing for rendering on a PC

cluster could also be improved. Currently a single

synchronizing peer guarantees consistency of each

cluster-rendered frame (all CAVE walls display the

sameworld state). But the PC running the synchronizing

peer has to push the entire world’s updates to the

rendering PC’s. This one-peer bottleneck would vanish

if multiple data sources independently synchronized

and desynchronized with the rendering PCs in the

cluster. The difficulty in this approach comes from

coordinating the synchronized video frames in the PC

cluster with the intermittently synchronized data

sources. Note that conventional parallel programming

APIs likeMPI cannot let synchronization groups change,

after they are created.

Finally, Myriad’s API can be refined. The underlying

scene graph API comes from Syzygy and is relatively
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mature, but the Myriad-specific APIs for manipulating

connections between reality peers are still evolving.

Myriad’s ability to finely manipulate the peer network

makes it more complex than other CVE systems. It is still

unclear how best to manage that complexity.

The software described in this paper is open source

and is available at http://www.isl.uiuc.edu, along with

all of the data files necessary to reproduce the

experiments.
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