
DSC 2004 Europe - Paris - September 2004

__

Synchronous data collection from diverse hardware
Camille Goudeseune, Braden Kowitz

Beckman Institute, 405 N Mathews St, Urbana IL 61801 USA

Abstract

We describe an accurate distributed timestamp service. This open-source C++ package runs on commodity
PC’s. With no extra hardware, the service correlates sensor data (head- and eye-trackers, biometrics, captured
video, driving simulator data) from multiple PC’s with sub-millisecond accuracy. PC-driven actuators like
motion bases and audio/visual/haptic warning systems are also controlled with the same accuracy. This lets us
accurately measure driver response time (brake at a stoplight, direct gaze at a hazard, answer a telephone).
Hardware vendors often assume that system integration revolves around their own devices. This service
synchronizes devices despite such assumptions. It is orders of magnitude more accurate than conventional
clock-synchronizing methods in Microsoft Windows. A Linux master clock provides a stable NTP time base.
Slave clocks, Linux or Windows, synchronize to the master clock by several mechanisms. Measuring round-trip
ping times corrects for network latency. In the slave’s high-resolution clock, drift is predictively compensated
for while trapping wraparound and jitter (e.g., from PCI bus contention). Performance degrades gracefully and
measurably on heavily loaded networks. Several phase-locked loops, within each slave and between slave and
master, guarantee performance.

Résumé

Nous décrivons un service précis d’horodateur distribué, par C++ en source ouvert, pour les PCs ordinaires.
Sans matériel supplémentaire, ce service corrèle des données des senseurs (traqueurs de tête et d’oeil, biométrie,
vidéo capturée, simulateur) des PCs multiples avec exactitude de moins d’une milliseconde. Les dispositifs
conduits par PC comme des bases de mouvement et des systèmes d’avertissement audio/visuel/haptique sont
également commandés avec la même exactitude. Ceci nous laisse exactement mesurer le temps de réponse de
conducteur (le frein à un feu d’arrêt, regard fixe direct à un risque, réponse à un téléphone). Les fournisseurs de
matériel supposent souvent que l’intégration de système tourne autour de leurs propres dispositifs. Ce service
synchronise des dispositifs en dépit de telles prétentions. C’est des ordres de grandeur plus précis que des
méthodes de synchronisation conventionnelles dans Microsoft Windows. Une horloge principale dans un PC
Linux fournit une base stable de temps de NTP. Les horloges esclave, Linux ou Windows, synchronisent à
l’horloge principale par plusieurs mécanismes. Mesurant les périodes aller-retour des paquets corrige pour la
latence de réseau. Dans l’horloge à haute résolution de l’esclave, la dérive est compensée prédictivement.
L’exactitude dégrade mesurablement et avec élégance sur les réseaux fortement chargés.

1. Introduction 1.2 Problem

Most simulator systems have requirements to pre-
cisely measure timing between events. Event types
are highly varied and can be anything from an eye
movement to a warning buzzer.

1.1 Environment

The Integrated Systems Laboratory (ISL) is a Beck-
man Institute facility at the University of Illinois at
Urbana-Champaign. ISL’s mission is to advance
scientific understanding of human-computer interac-
tions. We meet this goal in part by integrating ad-
vanced technologies so that Institute researchers can
conduct experiments in human multi-modal percep-
tion and cognition. The ISL operates several Virtual
Reality (VR) simulators for the research community
including the Beckman Institute Driving Simulator
(BIDS), a fully enclosed immersive 3D chamber, and
many smaller facilities.

Measuring event times is relatively simple when a
single computer controls all aspects of the simula-
tion: the controlling computer queries its local clock
whenever an event occurs. However, experiments
using multiple computers are becoming increasingly
common. This change is driven primarily by two
factors:

__

DSC 2004 Europe - Paris - September 2004

__

INPUTS OUTPUTS

World state
Dashboard
Steering
 feedback

Core Simulation

Projectors (x8)

Gas pedal
Brake pedal

Steering
Dynamics

Graphics
Rendering

Warning lights
Buzzers
Haptic feedback

Sensors
Buttons

Biometrics
Analog /

Digital I/O

Timestamped
 data files

Data
Logger

In-Car speakers
External
 speakers
Live recording

Subject voice
Operator voice

Sound files

Audio
I/O

.WAV .WAV

Heads-Down
Display

555-1212

Mobile Phone
Controller

Head position
Gaze vectorEye

Tracker

IR cameras
(x3)

Quad-split
 subject videoFrame

Grabber

Cameras
(x4)

Local Network

(1) VR simulations have historically been run on a
single specialized graphic supercomputer. Today,
networked clusters of commodity PCs deliver the
same graphics performance at a fraction of the cost
[Francis et al 2003].

 (2) The decreasing cost of computational power is
driving many specialized hardware components to
software implementation. This change in research
equipment is especially visible in eye- and motion-
tracking systems.

Because of these forces, many research environments
now use networked PC’s working together to run an
experiment. BIDS is an example of such a system
where separate computers are responsible for differ-
ent parts of the simulation (Fig. 1). In BIDS, one
computer plays warning sounds while another moni-
tors the brake pedal position. Each computer logs
events with a local timestamp for later analysis. But
in order to properly correlate data from different
machines, all computers need access to a common
time source.

1.3 Goals

Our aim is to develop a software component that
provides global timestamps using a local area net-
work. All delivered timestamps must be accurate to
within 1 msec of each other. In addition, the solution
must not require any specialized equipment apart
from conventional networking hardware. This time-
stamp service must easily integrate with a variety of
existing proprietary systems.

2. Using the timestamp service

The timestamp service is most useful in measuring a
subject’s response time (RT). In an experimental
trial, subjects are presented with various stimuli and
may respond in various ways (Table 1). RT is the
elapsed time between stimulus presentation and
response initiation. Researchers analyze variation in
RT with respect to independent variables such as the
subject’s age, traffic density, or attention loading
with secondary tasks. This necessitates accurate
measurements of RT.

Commonly, RT is measured by logging an event
with its simulation frame number. VR simulations
typically run at 60 frames per second (16.7 msec per
frame). It is not unusual for a scenario to have a RT
of about 100 msec. If such a scenario’s RT is clus-
tered in the interval [80, 130] msec, frame-based
timing offers only three distinct values for analysis.
A millisecond-accurate timestamp service offers 50
distinct values in this range. The strength of statisti-
cal conclusions correspondingly improves. Figure 1. Network of PCs with inputs and outputs

used in the BIDS driving simulator.

__

DSC 2004 Europe - Paris - September 2004

__

4. Previous work
Table 1. Example scenarios for

measuring a subject’s response time.

Stimuli Responses

• Voice prompt “change
lanes”

• Turn steering wheel
past threshold
• Lane deviation
exceeds threshold

• Other car “cuts off”
subject’s car

• Clench hands on steer-
ing wheel
• Release gas
• Depress brake
• Direct gaze at car

• Head-down
display shows phone
number

• Speak the phone num-
ber

• Subject’s speed
exceeds 100 km/h
• Voice prompt “please
slow down”

• Release gas pedal
• Speed falls below 100
km/h

One-time calibration

In an ideal world we could synchronize the system
clocks on each machine just once. Unfortunately,
affordable clocks do not keep exact time. High-
quality quartz crystals are used in PC system clocks.
These room temperature crystal oscillators (RTXO’s)
typically have a thermal drift of about 1 to
2 PPM/°C, though this is not linear and varies con-
siderably from one crystal to the next. Smaller drifts
come from mechanical shock, unregulated line volt-
age, humidity, barometric pressure, vibration, and
simple aging. Industry crystals typically advertise a
frequency stability of 20 to 100 PPM within a given
temperature range. Inexpensive crystals common to
budget PCs have tolerances worse than 100 PPM
[Agilent 2004, Martinec 2004].

All this means that a one-time calibration cannot
keep several clocks running in agreement with each
other for any useful length of time. For example,
even with an initial frequency calibration, a tempera-
ture change of only 2 °C can cause a 1 msec dis-
agreement within 10 minutes. Regular recalibration
is needed to compensate for frequency drift.

3. Installing the timestamp service

Radio clocks
The timestamp service is quite easy to use. It builds
and runs under Windows, Linux (Fedora and De-
bian), OpenBSD, and MacOS X. The time provider
server runs on a non-Windows machine as a user
level process. We have taken care to ensure ease of
use with client integration. The native interface is a
C API, with wrapper modules for TCL, Python,
Ruby and Java.

One way to provide timestamps is to send a clock
signal to each machine. Specialized devices that
receive time broadcasts via GPS or CDMA can be
attached to each PC. Unfortunately, this specialized
hardware costs several hundred dollars per PC and
requires antennas within range of the timing signal.
Other specialized hardware solutions exist, but since
each PC is typically connected to an Ethernet net-
work, it is desirable to use the existing network links
to keep the clocks synchronized.

We have used the C API to integrate our timestamp
service with eye trackers [Smart Eye AB 2004].
However, even novice developers can use the service
through its wrappers for scripting languages. For
example, integration with our driving simulator
[DriveSafety 2004] required only three steps. First,
we copied the shared libraries (DLL’s) into a system
folder. Next, we created a text file listing configura-
tion options like the time server address and error
tolerances. Finally, a few lines of TCL code let each
scenario access the timestamps.

Windows Time Service

When dealing with Windows exclusively, it may be
tempting to use the Windows Time Service. This
service is built into Microsoft operating systems
since Windows 2000 and promises to synchronize
system clocks over the network. Unfortunately it
“provide[s] clock values that are ‘loosely synchro-
nized’ across a network. This service is not designed
for use by applications that require greater precision”
[Brandolini and Green 2001]. This method clearly
does not provide the accuracy we need.

load /usr/local/lib/clockkit_tcl.so
 clockkit
ckInitialize
VTriggerCreate eachFrame {
 SimSetUserData [ckTimeAsString]
}
VTriggerAdd eachFrame 60 Hz

Master Clock Ticks

One can distribute timing signals to a computing
cluster by propagating master clock ticks over a
network link. In this method, one computer gener-

__

DSC 2004 Europe - Paris - September 2004

__

ates tick signals at a specified rate. The ticks are
then typically propagated over network links as UDP
broadcast packets. When a client machine receives
such a packet, it recognizes that a tick has occurred.
This method has been used to successfully synchro-
nize the timing of distributed graphics rendering
[Francis et al 2003, Papelis 2003]. Unfortunately,
this method is less reliable than using a local clock.
UDP packets can be dropped or delayed in transit,
causing timing errors of several milliseconds. Such
errors cause a slight amount of jitter or dropped
frames, which are nearly invisible in graphics render-
ing but unacceptable for measuring response time.

performance counter is unsuitable for generating
timestamps. It can however be used to interpolate
between system clock ticks [Nilsson 2004]. When a
system clock is disciplined by NTP, this interpolation
method should provide timestamps that are both
accurate and precise.

Unfortunately, we have found that performance
counter interpolation of an NTP-disciplined system
clock does not provide sufficiently accurate time-
stamps. The offset between NTP time and the sys-
tem clock is typically ±1.5 msec on our Windows
PC’s, even with low network delay and jitter (3.5 and
0.2 msec respectively).

Network Time Protocol Besides insufficient accuracy, there are several other
reasons we have chosen not to use the previously
described method. Integration is a major considera-
tion for a timestamp service. In order to provide
timestamps using NTP, the local clock must be dis-
ciplined to UTC. But adjusting the local clock may
not be desirable. For example, licensing bugs have
at times forced us to set system clocks incorrectly as
a temporary workaround. This method is incompati-
ble with NTP synchronization. Furthermore, adjust-
ing a PC’s local clock requires root or administrator
access, which local policy may forbid to users in a
shared computing environment. Instead of changing
the local clock, we compute a transform function
between the local and reference clocks. When a
timestamp is requested in this situation, the transform
function generates an accurate timestamp from the
local clock. This means that a mere user-level proc-
ess can provide accurate timestamps, and that sepa-
rate processes can synchronize to different sources.

In many situations, the Network Time Protocol
(NTP) daemon solves the timestamp problem per-
fectly. The daemon uses network communication to
discipline the local system clock to UTC (Universal
Coordinated Time). Although NTP runs on all major
operating systems, the Windows implementation
does have some limitations. Since it is often impos-
sible to avoid Windows when integrating new hard-
ware, we must carefully consider these limitations.

The NTP project claims to keep a Windows clock
synchronized to within 0.5 msec [Dietrich and Mayer
2003]. Although NTP can keep the system clock
accurate, the clock itself has a very low resolution. It
updates the clock value, or ticks, once every 10 to 15
msec. This means that if an event is measured at
time t, the clock can report a value anywhere in the
range [t – 15 msec, t].

Clearly, we cannot use the Windows system clock to
generate timestamps. On other operating systems,
such as Linux, the system clock has sub-millisecond
resolution; also, applications can request the current
time directly from the NTP daemon instead of from
the local clock. Doing so increases precision and
also provides error bounds via the NTP_GETTIME
API along with the current time. Unfortunately, the
Windows implementation does not yet support this
API [Dietrich and Mayer 2003].

NTP may seem to be a simpler solution. However,
we must be able to receive accurate timestamps from
within various programming languages including C,
C++, Java, Ruby, TCL, and Python. Because some
of these languages lack built-in support for accessing
the system clock with sub-millisecond accuracy, we
would need to build modules to support high resolu-
tion clock access. In fact, because of its low resolu-
tion system clock, Windows would need modules for
all languages.

Fortunately most Windows systems provide a high-
resolution clock known as the performance counter.
This counter cannot be disciplined to the proper time
or frequency, and often runs at frequencies very
different from that reported by the API. By itself, the

In addition to these concerns, many NTP features are
unnecessary to us. Instead of accurate UTC time, we
only need precise time relative to participating PC’s.
We do not need long-term reliability during network
failures, since in such a situation the distributed
simulation itself fails. Our simulations run on a
private network so we need no authentication, secu-
rity, or handling of byzantine failures. Finally, our
facilities have at most a few dozen PC’s so overload-
ing a time provider is not a concern.

__

DSC 2004 Europe - Paris - September 2004

__

5. Design of the timestamp service

The system clock on a Linux PC is used as a refer-
ence clock. It can optionally be disciplined with
NTP to increase its accuracy.

Each client needs access to a stable, high-resolution
time source. Windows machines use the perform-
ance counter; other operating systems use the system
clock.

Cristian’s algorithm measures the difference between
local clocks and the reference clock [Cristian 1989].
Our implementation of this algorithm sends UDP
packets to and from the reference clock. Each clock
skew measurement is accompanied by calculated
error bounds. These error bounds vary linearly with
the observed round-trip time (RTT) of the packets, so
a low-latency network improves skew measurements.

A simple phase-locked loop computes the transform
between the local and reference clocks. Our imple-
mentation uses two variable-frequency clocks con-
nected in series (Fig. 2). The first clock measures
phase changes every 30 seconds to discipline fre-
quency, while the second measures phase once per
second to adjust for clock skew. The two degrees of
freedom provided by the unusual two-clock design
lets us independently model (and correct) both fre-
quency and phase.

High
Resolution

Clock

Synchronized
Time Source

Variable
Frequency

Clock

Remote
Reference

Clock

Phase
Detect

Frequency
Discipline

Variable
Frequency

Clock

Phase
Detect

Phase
Discipline

Figure 2. Disciplining the clock.

Since each phase measurement from Cristian’s algo-
rithm has error bounds, we can adjust frequency and
phase conservatively. If a low-RTT packet arrives,
our algorithm uses it to very accurately adjust for
clock skew. If the next packet has a high RTT, then
the measurement error likely outweighs any informa-

tion in the packet. This method keeps the clock
synchronized during periods of bursty network traf-
fic. Clock frequency is measured over longer peri-
ods, and thus is less sensitive to RTT variation.

Error estimates

The generated timestamps would be worthless with-
out guarantees of accuracy. Fortunately, we can
compute very good estimates regarding the accuracy
of the timestamp service. Four pieces of information
provide our error estimates: (1) clock skew at last
measurement; (2) clock skew measurement error;
(3) frequency measurement error; and (4) assump-
tions about the variability of the local time source.
The worst-case error estimate begins with the skew
measurements (1) and (2). Frequency errors from (3)
and (4) accumulate over time since the last phase
measurement.

Simulation of this algorithm shows that an unloaded
10base-T link supports timestamps with an average
error bound of 200 µsec, well within our 1 msec goal
(Fig. 3).

Avg. Skew
Avg. Error Bound
Max. Error Bound

round trip time (µsec)

10bT Ethernet
100bT Ethernet

Internet (30+ msec)

 200 400 600 800 1000

Campus WAN

WiFi (~ 3-5 msec)

µsec

1

 10

 100

 1000

10000

Figure 3. Clock accuracy as a function of
packet round-trip time (simulated).

We have tried to make the time-stamp service simple
to use. Since researchers already have enough data
to analyze without considering timing inaccuracies,
error bounds are not supplied by default with each
timestamp. Instead, each PC has a configuration file
specifying an acceptable error bound. If a PC’s
timing error exceeds this limit for some reason, the
service changes to an “out of sync” state in which it
stops providing timestamps until the timing error
returns to an acceptable value. With this model,
users know that all delivered timestamps are accurate
within a guaranteed threshold.

__

DSC 2004 Europe - Paris - September 2004

__

__

Clock design

The timestamp service code is written in the C++
language, using namespaces to simplify integration.
Exceptions are used extensively for sanity checks on
conditions like nonmonotonic clock motion.

The source is built on top of the GNU Common C++
library, which provides OS-independent high-level
abstractions for threading and networking. These
abstractions ease the process of porting to various
operating systems. It also helps to keep the size of
the program very small. At less than 3000 lines, the
source code is easy to inspect for errors.

Finally, we used the Simplified Wrapper Interface
Generator (SWIG) to easily create modules for TCL,
Ruby, Python, and Java.

6. Conclusions

The timestamp service described here provides a
source of accurate timing data to a wide range of PC-
based equipment added to a driving simulator. These
timestamps are particularly useful for measuring a
subject's response time when the stimulus is pre-
sented by one PC and the response detected by an-
other.

No special hardware is needed other than local
Ethernet connectivity. No unusual software require-
ments, such as real-time priority or administrator
privileges, are needed. Timestamp accuracy can be
adjusted to a level supported by the network, typi-
cally under a millisecond. Timestamps are guaran-
teed to be within this accuracy bound.

The implementation is open source, and available
from http://www.isl.uiuc.edu/.

7. References

Agilent Technologies. 2004. Timebase oscillator
calibration.
<http://metrologyforum.tm.agilent.com/xtals.sh
tml>.

Brandolini, S., and D. Green. 2001. The Windows
Time Service.
<http://www.microsoft.com/windows2000/techi
nfo/howitworks/security/wintimeserv.asp>.

Cristian, F. 1989. “Probabilistic clock synchroniza-
tion.” Distributed Computing 3, 146–158.

Francis, G., C. Goudeseune, H. Kaczmarski, B.
Schaeffer, and J. Sullivan. 2003. “ALICE on
the eightfold way: exploring curved spaces in
an enclosed virtual reality theater.” In Visuali-
zation and Mathematics III, H.-C. Hege and K.
Polthier, eds., Springer, 2003, 307–317.

Dietrich, S., and D. Mayer. 2003. NTP 4.x for Win-
dows NT.
<http://www.eecis.udel.edu/~mills/ntp/html/bui
ld/hints/winnt.html>.

DriveSafety 2004. Company website.
<http://www.drivesafety.com>.

Martinec, M. 2004. Time, with focus on NTP and
Slovenia. <http://www.ijs.si/time/>.

Nilsson, J. 2004. “Implement a continuously updat-
ing, high-resolution time provider for Win-
dows.” MSDN Magazine 19(3).
<http://msdn.microsoft.com/msdnmag/issues/04
/03/HighResolutionTimer/>.

Papelis, Y. 2003. “Performance evaluation of a
framework for distributed real-time driving
simulation applications using Windows based
PCs.” DSC North America 2003 Proceedings.

SmartEye AB 2004. Company website.
<http://www.smarteye.se>.

	1. Introduction
	1.1 Environment
	1.2 Problem
	1.3 Goals

	2. Using the timestamp service
	3. Installing the timestamp service
	4. Previous work
	
	One-time calibration
	Radio clocks
	Windows Time Service
	Master Clock Ticks
	Network Time Protocol

	5. Design of the timestamp service
	�
	Error estimates
	Clock design

	6. Conclusions
	7. References

