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Abstract 

We describe an accurate distributed timestamp service.  This open-source C++ package runs on commodity 
PC’s.  With no extra hardware, the service correlates sensor data (head- and eye-trackers, biometrics, captured 
video, driving simulator data) from multiple PC’s with sub-millisecond accuracy.  PC-driven actuators like 
motion bases and audio/visual/haptic warning systems are also controlled with the same accuracy.  This lets us 
accurately measure driver response time (brake at a stoplight, direct gaze at a hazard, answer a telephone).  
Hardware vendors often assume that system integration revolves around their own devices.  This service 
synchronizes devices despite such assumptions.  It is orders of magnitude more accurate than conventional 
clock-synchronizing methods in Microsoft Windows.  A Linux master clock provides a stable NTP time base.  
Slave clocks, Linux or Windows, synchronize to the master clock by several mechanisms. Measuring round-trip 
ping times corrects for network latency.  In the slave’s high-resolution clock, drift is predictively compensated 
for while trapping wraparound and jitter (e.g., from PCI bus contention).  Performance degrades gracefully and 
measurably on heavily loaded networks.  Several phase-locked loops, within each slave and between slave and 
master, guarantee performance. 

Résumé 

Nous décrivons un service précis d’horodateur distribué, par C++ en source ouvert, pour les PCs ordinaires.  
Sans matériel supplémentaire, ce service corrèle des données des senseurs (traqueurs de tête et d’oeil, biométrie, 
vidéo capturée, simulateur) des PCs multiples avec exactitude de moins d’une milliseconde.  Les dispositifs 
conduits par PC comme des bases de mouvement et des systèmes d’avertissement audio/visuel/haptique sont 
également commandés avec la même exactitude.  Ceci nous laisse exactement mesurer le temps de réponse de 
conducteur (le frein à un feu d’arrêt, regard fixe direct à un risque, réponse à un téléphone).  Les fournisseurs de 
matériel supposent souvent que l’intégration de système tourne autour de leurs propres dispositifs.  Ce service 
synchronise des dispositifs en dépit de telles prétentions.  C’est des ordres de grandeur plus précis que des 
méthodes de synchronisation conventionnelles dans Microsoft Windows. Une horloge principale dans un PC 
Linux fournit une base stable de temps de NTP. Les horloges esclave, Linux ou Windows, synchronisent à 
l’horloge principale par plusieurs mécanismes. Mesurant les périodes aller-retour des paquets corrige pour la 
latence de réseau. Dans l’horloge à haute résolution de l’esclave, la dérive est compensée prédictivement.  
L’exactitude dégrade mesurablement et avec élégance sur les réseaux fortement chargés. 
 
 
 
 
 
1. Introduction 1.2 Problem 

Most simulator systems have requirements to pre-
cisely measure timing between events.  Event types 
are highly varied and can be anything from an eye 
movement to a warning buzzer. 

1.1 Environment 

The Integrated Systems Laboratory (ISL) is a Beck-
man Institute facility at the University of Illinois at 
Urbana-Champaign.  ISL’s mission is to advance 
scientific understanding of human-computer interac-
tions.  We meet this goal in part by integrating ad-
vanced technologies so that Institute researchers can 
conduct experiments in human multi-modal percep-
tion and cognition.  The ISL operates several Virtual 
Reality (VR) simulators for the research community 
including the Beckman Institute Driving Simulator 
(BIDS), a fully enclosed immersive 3D chamber, and 
many smaller facilities. 

Measuring event times is relatively simple when a 
single computer controls all aspects of the simula-
tion:  the controlling computer queries its local clock 
whenever an event occurs.  However, experiments 
using multiple computers are becoming increasingly 
common.  This change is driven primarily by two 
factors: 
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(1) VR simulations have historically been run on a 
single specialized graphic supercomputer.  Today, 
networked clusters of commodity PCs deliver the 
same graphics performance at a fraction of the cost 
[Francis et al 2003]. 

 (2) The decreasing cost of computational power is 
driving many specialized hardware components to 
software implementation.  This change in research 
equipment is especially visible in eye- and motion-
tracking systems. 

Because of these forces, many research environments 
now use networked PC’s working together to run an 
experiment.  BIDS is an example of such a system 
where separate computers are responsible for differ-
ent parts of the simulation (Fig. 1).  In BIDS, one 
computer plays warning sounds while another moni-
tors the brake pedal position.  Each computer logs 
events with a local timestamp for later analysis.  But 
in order to properly correlate data from different 
machines, all computers need access to a common 
time source. 

1.3 Goals 

Our aim is to develop a software component that 
provides global timestamps using a local area net-
work.  All delivered timestamps must be accurate to 
within 1 msec of each other.  In addition, the solution 
must not require any specialized equipment apart 
from conventional networking hardware.  This time-
stamp service must easily integrate with a variety of 
existing proprietary systems. 

2. Using the timestamp service 

The timestamp service is most useful in measuring a 
subject’s response time (RT).  In an experimental 
trial, subjects are presented with various stimuli and 
may respond in various ways (Table 1).  RT is the 
elapsed time between stimulus presentation and 
response initiation.  Researchers analyze variation in 
RT with respect to independent variables such as the 
subject’s age, traffic density, or attention loading 
with secondary tasks.  This necessitates accurate 
measurements of RT. 

Commonly, RT is measured by logging an event 
with its simulation frame number.  VR simulations 
typically run at 60 frames per second (16.7 msec per 
frame).  It is not unusual for a scenario to have a RT 
of about 100 msec.  If such a scenario’s RT is clus-
tered in the interval [80, 130] msec, frame-based 
timing offers only three distinct values for analysis.  
A millisecond-accurate timestamp service offers 50 
distinct values in this range.  The strength of statisti-
cal conclusions correspondingly improves. Figure 1.  Network of PCs with inputs and outputs 

used in the BIDS driving simulator. 
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4. Previous work  
Table 1.  Example scenarios for 

measuring a subject’s response time. 

Stimuli Responses 

• Voice prompt “change 
lanes” 

• Turn steering wheel 
past threshold 
• Lane deviation 
exceeds threshold 

• Other car “cuts off” 
subject’s car 

• Clench hands on steer-
ing wheel 
• Release gas 
• Depress brake 
• Direct gaze at car 

• Head-down 
display shows phone 
number 

• Speak the phone num-
ber 

• Subject’s speed 
exceeds 100 km/h 
• Voice prompt “please 
slow down” 

• Release gas pedal 
• Speed falls below 100 
km/h 

One-time calibration 

In an ideal world we could synchronize the system 
clocks on each machine just once.  Unfortunately, 
affordable clocks do not keep exact time.  High-
quality quartz crystals are used in PC system clocks.  
These room temperature crystal oscillators (RTXO’s) 
typically have a thermal drift of about 1 to 
2 PPM/°C, though this is not linear and varies con-
siderably from one crystal to the next.  Smaller drifts 
come from mechanical shock, unregulated line volt-
age, humidity, barometric pressure, vibration, and 
simple aging.  Industry crystals typically advertise a 
frequency stability of 20 to 100 PPM within a given 
temperature range.  Inexpensive crystals common to 
budget PCs have tolerances worse than 100 PPM 
[Agilent 2004, Martinec 2004]. 

All this means that a one-time calibration cannot 
keep several clocks running in agreement with each 
other for any useful length of time.  For example, 
even with an initial frequency calibration, a tempera-
ture change of only 2 °C can cause a 1 msec dis-
agreement within 10 minutes.  Regular recalibration 
is needed to compensate for frequency drift. 

 
3.  Installing the timestamp service 

Radio clocks 
The timestamp service is quite easy to use.  It builds 
and runs under Windows, Linux (Fedora and De-
bian), OpenBSD, and MacOS X.  The time provider 
server runs on a non-Windows machine as a user 
level process.  We have taken care to ensure ease of 
use with client integration.  The native interface is a 
C API, with wrapper modules for TCL, Python, 
Ruby and Java. 

One way to provide timestamps is to send a clock 
signal to each machine.  Specialized devices that 
receive time broadcasts via GPS or CDMA can be 
attached to each PC.  Unfortunately, this specialized 
hardware costs several hundred dollars per PC and 
requires antennas within range of the timing signal.  
Other specialized hardware solutions exist, but since 
each PC is typically connected to an Ethernet net-
work, it is desirable to use the existing network links 
to keep the clocks synchronized. 

We have used the C API to integrate our timestamp 
service with eye trackers [Smart Eye AB 2004].  
However, even novice developers can use the service 
through its wrappers for scripting languages.  For 
example, integration with our driving simulator 
[DriveSafety 2004] required only three steps.  First, 
we copied the shared libraries (DLL’s) into a system 
folder.  Next, we created a text file listing configura-
tion options like the time server address and error 
tolerances.  Finally, a few lines of TCL code let each 
scenario access the timestamps. 

Windows Time Service 

When dealing with Windows exclusively, it may be 
tempting to use the Windows Time Service.  This 
service is built into Microsoft operating systems 
since Windows 2000 and promises to synchronize 
system clocks over the network.  Unfortunately it 
“provide[s] clock values that are ‘loosely synchro-
nized’ across a network. This service is not designed 
for use by applications that require greater precision” 
[Brandolini and Green 2001].  This method clearly 
does not provide the accuracy we need. 

 
load /usr/local/lib/clockkit_tcl.so 
    clockkit 
ckInitialize 
VTriggerCreate eachFrame { 
    SimSetUserData [ckTimeAsString] 
} 
VTriggerAdd eachFrame 60 Hz 

Master Clock Ticks 

One can distribute timing signals to a computing 
cluster by propagating master clock ticks over a 
network link.  In this method, one computer gener-

__________________________________________________________________________ 

 

   



DSC 2004 Europe - Paris - September 2004   

________________________________________________________________________ 

ates tick signals at a specified rate.  The ticks are 
then typically propagated over network links as UDP 
broadcast packets.  When a client machine receives 
such a packet, it recognizes that a tick has occurred.  
This method has been used to successfully synchro-
nize the timing of distributed graphics rendering 
[Francis et al 2003, Papelis 2003].  Unfortunately, 
this method is less reliable than using a local clock.  
UDP packets can be dropped or delayed in transit, 
causing timing errors of several milliseconds.  Such 
errors cause a slight amount of jitter or dropped 
frames, which are nearly invisible in graphics render-
ing but unacceptable for measuring response time. 

performance counter is unsuitable for generating 
timestamps.  It can however be used to interpolate 
between system clock ticks [Nilsson 2004].  When a 
system clock is disciplined by NTP, this interpolation 
method should provide timestamps that are both 
accurate and precise. 

Unfortunately, we have found that performance 
counter interpolation of an NTP-disciplined system 
clock does not provide sufficiently accurate time-
stamps.  The offset between NTP time and the sys-
tem clock is typically ±1.5 msec on our Windows 
PC’s, even with low network delay and jitter (3.5 and 
0.2 msec respectively). 

Network Time Protocol Besides insufficient accuracy, there are several other 
reasons we have chosen not to use the previously 
described method.  Integration is a major considera-
tion for a timestamp service.  In order to provide 
timestamps using NTP, the local clock must be dis-
ciplined to UTC.  But adjusting the local clock may 
not be desirable.  For example, licensing bugs have 
at times forced us to set system clocks incorrectly as 
a temporary workaround.  This method is incompati-
ble with NTP synchronization.  Furthermore, adjust-
ing a PC’s local clock requires root or administrator 
access, which local policy may forbid to users in a 
shared computing environment.  Instead of changing 
the local clock, we compute a transform function 
between the local and reference clocks.  When a 
timestamp is requested in this situation, the transform 
function generates an accurate timestamp from the 
local clock.  This means that a mere user-level proc-
ess can provide accurate timestamps, and that sepa-
rate processes can synchronize to different sources. 

In many situations, the Network Time Protocol 
(NTP) daemon solves the timestamp problem per-
fectly.  The daemon uses network communication to 
discipline the local system clock to UTC (Universal 
Coordinated Time).  Although NTP runs on all major 
operating systems, the Windows implementation 
does have some limitations.  Since it is often impos-
sible to avoid Windows when integrating new hard-
ware, we must carefully consider these limitations. 

The NTP project claims to keep a Windows clock 
synchronized to within 0.5 msec [Dietrich and Mayer 
2003].  Although NTP can keep the system clock 
accurate, the clock itself has a very low resolution. It 
updates the clock value, or ticks, once every 10 to 15 
msec.  This means that if an event is measured at 
time t, the clock can report a value anywhere in the 
range [t – 15 msec, t]. 

Clearly, we cannot use the Windows system clock to 
generate timestamps.  On other operating systems, 
such as Linux, the system clock has sub-millisecond 
resolution;  also, applications can request the current 
time directly from the NTP daemon instead of from 
the local clock.  Doing so increases precision and 
also provides error bounds via the NTP_GETTIME 
API along with the current time.  Unfortunately, the 
Windows implementation does not yet support this 
API [Dietrich and Mayer 2003]. 

NTP may seem to be a simpler solution.  However, 
we must be able to receive accurate timestamps from 
within various programming languages including C, 
C++, Java, Ruby, TCL, and Python.  Because some 
of these languages lack built-in support for accessing 
the system clock with sub-millisecond accuracy, we 
would need to build modules to support high resolu-
tion clock access.  In fact, because of its low resolu-
tion system clock, Windows would need modules for 
all languages. 

Fortunately most Windows systems provide a high-
resolution clock known as the performance counter.  
This counter cannot be disciplined to the proper time 
or frequency, and often runs at frequencies very 
different from that reported by the API.  By itself, the 
 

In addition to these concerns, many NTP features are 
unnecessary to us.  Instead of accurate UTC time, we 
only need precise time relative to participating PC’s.  
We do not need long-term reliability during network 
failures, since in such a situation the distributed 
simulation itself fails.  Our simulations run on a 
private network so we need no authentication, secu-
rity, or handling of byzantine failures.  Finally, our 
facilities have at most a few dozen PC’s so overload-
ing a time provider is not a concern. 
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5. Design of the timestamp service 

The system clock on a Linux PC is used as a refer-
ence clock.  It can optionally be disciplined with 
NTP to increase its accuracy. 

Each client needs access to a stable, high-resolution 
time source.  Windows machines use the perform-
ance counter; other operating systems use the system 
clock. 

Cristian’s algorithm measures the difference between 
local clocks and the reference clock [Cristian 1989].  
Our implementation of this algorithm sends UDP 
packets to and from the reference clock.  Each clock 
skew measurement is accompanied by calculated 
error bounds.  These error bounds vary linearly with 
the observed round-trip time (RTT) of the packets, so 
a low-latency network improves skew measurements. 

A simple phase-locked loop computes the transform 
between the local and reference clocks.  Our imple-
mentation uses two variable-frequency clocks con-
nected in series (Fig. 2).  The first clock measures 
phase changes every 30 seconds to discipline fre-
quency, while the second measures phase once per 
second to adjust for clock skew.  The two degrees of 
freedom provided by the unusual two-clock design 
lets us independently model (and correct) both fre-
quency and phase. 
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Figure 2.  Disciplining the clock. 

 

Since each phase measurement from Cristian’s algo-
rithm has error bounds, we can adjust frequency and 
phase conservatively.  If a low-RTT packet arrives, 
our algorithm uses it to very accurately adjust for 
clock skew.  If the next packet has a high RTT, then 
the measurement error likely outweighs any informa-

tion in the packet.  This method keeps the clock 
synchronized during periods of bursty network traf-
fic.  Clock frequency is measured over longer peri-
ods, and thus is less sensitive to RTT variation. 

Error estimates 

The generated timestamps would be worthless with-
out guarantees of accuracy.  Fortunately, we can 
compute very good estimates regarding the accuracy 
of the timestamp service.  Four pieces of information 
provide our error estimates: (1) clock skew at last 
measurement;  (2) clock skew measurement error;  
(3) frequency measurement error; and (4) assump-
tions about the variability of the local time source.  
The worst-case error estimate begins with the skew 
measurements (1) and (2).  Frequency errors from (3) 
and (4) accumulate over time since the last phase 
measurement. 

Simulation of this algorithm shows that an unloaded 
10base-T link supports timestamps with an average 
error bound of 200 µsec, well within our 1 msec goal 
(Fig. 3). 
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Figure 3.  Clock accuracy as a function of 
packet round-trip time (simulated). 

 

We have tried to make the time-stamp service simple 
to use.  Since researchers already have enough data 
to analyze without considering timing inaccuracies, 
error bounds are not supplied by default with each 
timestamp.  Instead, each PC has a configuration file 
specifying an acceptable error bound.  If a PC’s 
timing error exceeds this limit for some reason, the 
service changes to an “out of sync” state in which it 
stops providing timestamps until the timing error 
returns to an acceptable value.  With this model, 
users know that all delivered timestamps are accurate 
within a guaranteed threshold. 
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Clock design 

The timestamp service code is written in the C++ 
language, using namespaces to simplify integration.  
Exceptions are used extensively for sanity checks on 
conditions like nonmonotonic clock motion. 

The source is built on top of the GNU Common C++ 
library, which provides OS-independent high-level 
abstractions for threading and networking.  These 
abstractions ease the process of porting to various 
operating systems. It also helps to keep the size of 
the program very small.  At less than 3000 lines, the 
source code is easy to inspect for errors. 

Finally, we used the Simplified Wrapper Interface 
Generator (SWIG) to easily create modules for TCL, 
Ruby, Python, and Java. 

6. Conclusions 

The timestamp service described here provides a 
source of accurate timing data to a wide range of PC-
based equipment added to a driving simulator. These 
timestamps are particularly useful for measuring a 
subject's response time when the stimulus is pre-
sented by one PC and the response detected by an-
other. 

No special hardware is needed other than local 
Ethernet connectivity. No unusual software require-
ments, such as real-time priority or administrator 
privileges, are needed. Timestamp accuracy can be 
adjusted to a level supported by the network, typi-
cally under a millisecond.  Timestamps are guaran-
teed to be within this accuracy bound. 

The implementation is open source, and available 
from http://www.isl.uiuc.edu/. 
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