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ABSTRACT
We propose a saliency-maximized audio spectrogram as a
representation that lets human analysts quickly search forand
detect events in audio recordings. By rendering target events
as visually salient patterns, this representation minimizes the
time and effort needed to examine a recording. In particular,
we propose a transformation of a conventional spectrogram
that maximizes the mutual information between the spectro-
grams of isolated target events and the estimated saliency of
the overall visual representation. When subjects are shown
spectrograms that are saliency-maximized, they perform sig-
nificantly better in a 1/10-real-time acoustic event detection
task.

Index Terms— acoustic event detection, visual saliency,
audio visualization

1. INTRODUCTION

Acoustic event detection (AED) is the detection of non-
speech events in long audio recordings. Automatic AED
is difficult: in the 2007 Classification of Events, Activities
and Relationships (CLEAR) evaluations, namely detecting
predefined acoustic events in continuous real seminar audio
recordings, no system’s accuracy greatly exceeded 30% [1].

In many detection tasks human perception outperforms
machine perception, as it better handles the semantic gap be-
tween noisy observations and target events. For example, rifle
magazine insertion clicks are detected with 100% accuracy at
0 dB SNR in white noise, babble, or jungle noise [2]. Humans
can detect an anomalous sound even on its first audition [3].

However, for long audio recordings, shortcuts like high-
speed playback are limited: most people cannot comprehend
continuous speech faster than twice normal speed [4]. Worse
yet, even after detecting an event in a relatively long segment,
pinpointing the event’s timestamp usually requires rewinding
and replaying. Our preliminary experiments show that pure-
listening AED is considerably slower than real-time playback.

However, this real-time barrier to human AED can be bro-
ken by enlisting human vision. To this end, we propose a vi-
sualization, a saliency-optimized audio spectrogram thatcan
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be examined at different temporal scales to efficiently elimi-
nate uninteresting regions. This visualization is synchronized
with the source audio recording, so an analyst searching for
target events typically listens to only brief excerpts of visually
interesting segments. This is so because the target events’in-
formation is embedded into visually salient patterns, which
are processed by human vision with priority [5].

We formulate this visualization problem as maximizing
the mutual information (MI) between the spectrogram of the
target eventsY and the estimated visual saliency of the ex-
amined spectrogramϕ(f) (Fig. 1). The input informationY
is the spectrogram of the isolated target events in isolation
(without the background noiseN ); the transmitted informa-
tion is the visual perception by the observer. The visualiza-
tion functionf converts the mixed-signal spectrogramX to
the saliency-optimized spectrogram. The saliency mapϕ(f)
is the output of the saliency model which results from the
bottom-up attention of the human visual system. After the
saliency model, (information in) the salient regions, e.g., a
target event, will be recognized asZ.

2. PROPOSED METHOD

We approximate the human visual system with a communi-
cation channel that selectively attends to visual patternsin
decreasing order of perceptual saliency. Therefore, when
quickly examining a display, it perceives at most a few highly
salient objects. The rate of information transmission is lim-
ited by finite span of attention (about six objects at a glance),
and by immediate memory (about seven items) [6]. Salient
patterns are processed first and are therefore more likely to
be transmitted through this channel. Our algorithm uses a
computational saliency model to simulate this process and
generate the saliency distribution of an image.

Fig. 1. Flowchart of human AED from a visual display,f(X).



Fig. 2. Flowchart of the proposed algorithm.

The saliency model has been used to analyze the effec-
tiveness of a visual representation. For example, Jänicke and
Chen proposed a salience-based quality metric for visual-
ization using the correspondence between the data relevance
mask and the saliency map [7]. Although there have been
some works on analyzing the quality of a visual represen-
tation based on saliency, there is still no good way to auto-
matically generate the visual representation of data whichis
saliency-maximized.

We propose to measure the efficiency of information
transmission fromY to ϕ through their MI. Choosing the
visualization (encoding) functionf that maximizesI(Y ;ϕ)
then lets the saliency-optimized spectrogram represent the
target events optimally for fast human visual examination.

Our task can be formulated as:

f∗ = argmax
f

EX,Y {I(Y ;ϕ(f(X)))} (1)

whereX is the input spectrogram,Y is the ground truth
(the spectrogram of the isolated acoustic event), andf(X)
is the displayed spectrogram, a transformation ofX. The
MI between the saliency map and the ground truth is thus
E{I(Y ;ϕ)}. Five modules solve for the optimized transfor-
mation functionf : computing the spectrogram, transforming
the visualization, computing the saliency map, computing the
MI, and maximizing the MI (Fig. 2).

2.1. Computing and transforming the spectrogram

We based our visualization on the humble spectrogram be-
cause it is familiar to audio experts, and because we found
that even näıve subjects could successfully interpret details in
such a time-frequency plot. Our grayscale spectrogram re-
solves 128 frequency bands down to 5 msec.

Our goal is to find a saliency-maximized transformation
functionf . This ensures that the displayed signal renders tar-
get events so thatϕ extracts them as salient patterns. In other
words,f(X) is displayed, butϕ(f) is perceived. For simplic-
ity we use 2D linear filters:f(X) = h[n1, n2] ∗∗X[n1, n2],
where Eq. (1) optimizesh.

2.2. Computing the saliency map

Transforming the spectrogram of the mixed signalX yields
the displayed imagef(X). We use an image saliency algo-

rithm to generate the saliency map, which approximates the
bottom-up attention of the human visual system. Follow-
ing the framework of [8] and [9], this algorithm has three
steps: extracting image features; building feature pyramids
and computing each feature’s center-surround difference;and
combining all features’ saliency maps into a single map.

The two features used by the algorithm, orientation (from
Gabor-filtering different scales) and image intensity, aresim-
ilar to [8].

Because a salient region must somehow differ from its
neighborhood, the algorithm detects saliency with a center-
surround difference (CSD) implemented by a difference of
Gaussians:
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The DoG is parameterized by twoσ’s, the center layer and
surround layer. For computational efficiency, a Gaussian
pyramid generates images filtered by Gaussians of different
σ’s. We use the pyramid’s first and fourth layers as center and
surround.

Computation of the CSD’s can be formulated as:

CSDk = max {0, Fc,k 	 Fs,k} , k ∈ {I, O}

whereFc,k andFs,k are the center and surround layers of the
Gaussian pyramid for featurek, and	 denotes across-scale
subtraction. Intensity is denoted byI, the four orientations by
O. We combine the CSD’s of different features into saliency
maps, normalizing withN(·) before every summation [9]:

Fk = N (CSDk) , k ∈{0◦, 45◦, 90◦, 135◦, I}

FO = N
(

∑

k
Fk

)

, k ∈{0◦, 45◦, 90◦, 135◦}

S = (FI + FO)/2

Thus, the final saliency mapS is the mean of the maps for
intensity and for the combined orientations.

2.3. Maximizing mutual information

We evaluate how well human visual perception captures the
information in the visualization associated with the target
events. This is estimated with the MI between the ground
truthY (the spectrogram of the isolated target event obtained
according to Sec. 2.1), and the saliency mapX of the mixed
spectrogram:

I(X;Y ) =
∑

x∈X, y∈Y

p(x, y) log
p(x, y)

p(x)p(y)

Herep(x, y), p(x) andp(y) are the joint and marginal distri-
butions of the pixel intensity of these two images.



Because the objective functionE{I(Y ;ϕ)} in Eq. (1) is
non-convex and non-differentiable, we merely approximate
the global maximum. Simulated annealing estimatesf from
an initial transformation ofh[n1, n2] = δ[n1, n2]. This trans-
formation is also the baseline one (using the conventional
spectrogram). Only the training data is used to optimizef .

We evaluated linear filters with sizes from5×5 to15×15,
all with similar optimized mean MI’s. For subject experi-
ments we chose a5 × 5 filter, after inspecting the visualiza-
tions generated from the training data.

3. EXPERIMENTAL DESIGN

To evaluate the proposed algorithm, we compared the conven-
tional and the saliency-maximized spectrograms both objec-
tively and subjectively. Objective comparison measured the
I(Y ;ϕ) of target events. Subjective comparison was the F-
score of humans using either spectrogram to detect acoustic
events.

We simulated data for this task using sound effects as tar-
get events superimposed on (“mixed with”) the realistically
noisy background of a seminar room [10]. All 62 sound ef-
fects were obviously foreign to a seminar room. Both the tar-
get events and the background audio were split into disjoint
sets for training and for evaluation. For objective comparison,
we made training and evaluation samples by mixing each tar-
get event with a temporally center-aligned background of four
times the event’s duration. Section 4.3 describes the data for
subjective evaluation.

4. EXPERIMENTAL RESULTS

4.1. Saliency-maximized spectrogram

The saliency-maximizing transformation learned by the pro-
posed algorithm attenuates background speech and empha-
sizes non-speech events (Fig. 3). The three target events are
obscured in the conventional spectrogram, but instantly visi-
ble in the saliency-maximized spectrogram. Conventional im-
age enhancements such as edge detection and Wiener filters
are much less effective.

Fig. 3. Qualitative improvement of a spectrogram: con-
ventional (top), saliency-maximized (bottom). Three target
events are marked with black underlines.

Fig. 4. Comparison of MI for 31 evaluation samples. Al-
most all samples yield a larger MI when the spectrogram is
saliency-maximized.

4.2. Objective measures

Our objective measure is the empirical MI between the spec-
trogram and the ground truth. Fig. 4 shows the quantitative
improvement due to maximizing saliency. Both axes mea-
sure theI(Y ;ϕ) of evaluation samples. (Recall that neither
these samples nor the background audio used in this evalua-
tion were used in training.)

4.3. Subjective experiments

We measured human subjects’ AED performance with both
kinds of spectrogram, using an otherwise identical computer
interface.

To let a human subject conveniently browse audio, we de-
veloped an audio visualization interface called Timeliner[3].
This shows a multi-hour recording that subjects can smoothly
and rapidly zoom temporally, over a range from 10µs to tens
of minutes per horizontal pixel. Subjects can also listen to
any part of the recording (Fig. 5). For these experiments the
display device was a 17-inch CRT screen, while audio was
presented with ear buds (Fig. 6).

We asked twelve subjects, unfamiliar with spectrograms,
to detect anomalous target events in 80-minute recordings
of seminar room background noise. Into each recording we
mixed 40 sound effects randomly chosen from the testing set,
uniformly distributed but without overlap, at various ampli-
tudes. Because the task lasted only 8 minutes, naı̈ve listening
(real-time search) would expect to find only a tenth of the
targets. We therefore instructed subjects to first scan for a
visually suspicious pattern and then verify it by listening,
before annotating the temporal position of that target.

Each subject annotated four different recordings, either



Fig. 5. Components of Timeliner’s interface: spectrogram,
waveform, and time-axis.

Fig. 6. Configuration of the human subject experiment.

two saliency-maximized followed by two conventional spec-
trograms, or in the reverse order. This was balanced across
subjects. Afterwards, subjects were asked which spectrogram
was more helpful (we explained nothing to them about spec-
trograms or saliency). All preferred the saliency-maximized
one.

To quantify subjects’ AED performance from their anno-
tated timestamps, we computed their recall and their preci-
sion. Recall was the fraction of targets whose durations con-
tained a timestamp (“how many were hit”). Precision was
the fraction of timestamps that were in some target (“hits per
try”). A subject’s F-score was the harmonic mean of their
precision and recall [11].

The F-scores’ analysis of variance used three factors:
spectrogramtype (conventional or saliency-maximized),or-
der of presentation of spectrogram type, and whichrecord-
ings were used (Fig. 7b). The saliency-maximized spectro-
gram significantly outperformed the conventional one, with
no significant interaction between these three factors.

5. CONCLUSION

The proposed saliency-maximized audio spectrogram enables
much-faster-than-real-time audio browsing by rendering tar-

(a)

Source d.f. F P
Type 1 142.65 <0.001
Order 1 0.0 0.978
Recording 3 0.3 0.823
Type× Order 1 0.4 0.533
Type× Rec. 3 1.86 0.154
Order× Rec. 3 0.29 0.836

(b)

Fig. 7. (a) F-scores for the AED task (error bars indicate stan-
dard deviation); (b) ANOVA of the F-scores.

get events as salient patterns processed with priority by the
human visual system. In a 1/10-real-time AED task, human
subjects achieved 100% relative improvement in event de-
tection F-score with the saliency-maximized spectrogram,as
compared to the conventional spectrogram (Fig. 7a).
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