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Abstract 
We discuss an audio rendering pipeline that provides real-time interactive sound synthesis for virtual environments.  Sounds 
are controlled by computational models including experimental scientific systems.  We discuss composition protocols and 

software architecture for hierarchical control and for synchronization with graphics.  Rendering algorithms are presented for 
producing sound from a physically-based simulation of a chaotic and from higher-dimensional topological structures. 

1.  Introduction Existing computer music systems provide some of these 
capabilities in specialized hardware.  Rather than adopt 
existing music systems we have focused on the importance 
of demonstrating that sound synthesis is relevant for gen-
eral-purpose computing.  We want researchers to have 
immediate access to sound computation in the same lan-
guage, operating system and control flow that supports 
standard computing and graphics rendering engines.  There-
fore our pipeline is written in unix/c/c++ to maintain poten-
tial portability and scalability and stay close to graphics 
architectures and their user communities. 

In this paper we discuss the implementation of a rendering 
pipeline designed to bring sound synthesis and composition 
as research components into virtual environments (VE).  
We find that VE research provides a platform for projects 
closely related to computer music composition.  We also 
find the VE research community is interested in the poten-
tial relevance of composition for their work, and the rele-
vance of their work for composers.  We have been develop-
ing a software-based sound synthesis and composition 
protocol to enhance the possibilities of collaboration.  This 
protocol defines a pipeline from computational models to 
sounds.  Along this pipeline we identify endeavors related 
to computer music including real-time sound synthesis, 
gesture-based interaction, composition algorithms, physi-
cally-based sound production models, and techniques for 
synchronizing sound with graphical events. 

2.1  3D Primitives 
The reality image in computer graphics is encoded in an 
objective 3D embedding space.  This objective encoding 
describes the range of potential subjective views that may 
be obtained from the image.  Actual 3D rendering depends 
on hardware that is downstream from the objective 3D 
encoding.  We adopt similar subsystems for audio.  A pri-
mary software language encodes oscillations, envelopes, 
and sound propagation information, and manages rendering 
of dry (non-localized) sources.  Secondary, scalable display 
subsystems are used to generate localization and depth 
cueing.  Regardless of rendering hardware, 3D features of 
the propagation environment are encoded as attributes of 
the primitive description of a sound. 

A rendering pipeline encourages composers to consider the 
entire synthesis process as a composition.  Generating and 
controlling complexity is among the most difficult tasks of 
computer music, and the pipeline model is valuable for 
connecting complex systems with rendering engines.  Rapid 
low-level communication from complex model to sound 
synthesis engine permit the composer to use interactive 
control of the complex model to control the sound. 

 

 
 
Figure 1.  CAVE Automatic Virtual Environment 
University of Illinois 

2.  VE Systems 
Virtual environments are multiple-engine computation 
systems converging toward solutions for immersive human 
interface.  Immersion has been associated with two classes 
of experience: fictional constructs and feedback constructs.1  
Music listening may be identified primarily with the first 
class and music performance primarily with the second.  In 
order that sound provide aspects of both classes of experi-
ence we embark toward a familiar goal: techniques for 
generating dynamical audio spectra informed by real-world 
analysis, using efficient numerical encoding that allows 
synthesis with interactive variation in real-time. 

 
1 Fictional constructs involve an observer’s “willing suspension of disbe-
lief” that supports the diegesis (the narrative world created in literature, 
theater and cinema).  Feedback constructs are “everyday experiences” that 
an observer constructs by taking actions and observing their consequences 
through multiple sensory modalities. 
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2.2  The CAVE virtual environment 
The primary testbed for our sound system is the CAVE, a 
surround-sound, surround screen, projection-based VR 
system designed to convey an unencumbered immersive 
group experience [DeFanti, 1992].  3D computer graphics 
are projected into a 10′×10′×10′ cube composed of display 
screens that completely surround the viewer (figure 1).  A 
head and hand-tracking system produces the correct stereo 
perspective and isolates the position and orientation of a 3D 
input device.  CAVE observers do not wear helmets or 
obstructing gear.  Instead they put on lightweight stereo 
glasses and walk around freely, interacting with virtual 
objects and with one another.  One set of glasses carries a 
magnetic tracking device that allows the stereo projection 
reference point to be computed for a mobile point of view.  
The wand, a 3-D mouse provides 6 degrees of continuous 
control plus 3 buttons and a pressure-sensitive joystick. 

2.3  The CAVE Audio Display System 
CAVE audio uses speakers and a MIDI-controlled distribu-
tion matrix (figure 2).  Independent localization of up to 4 
sources is provided by MIDI-controlled attenuation at each 
speaker.  Distance cues are provided by MIDI-controlled 
reverberation and delay; the mix of wet and dry signal may 
be controlled independently for each source at each 
speaker.  The reflectivity of the screens tends to confound 
directional cues at excessive loudness levels.  Headphones 
provide better imaging but are encumbering and present 
problems when multiple users are in the CAVE.  Infrared 
wireless headsets can interfere with two other infrared sig-
nal systems in the CAVE (projector control and stereo 
glasses synchronization).  Computing a unique audio focal 
point for each user is also problematic.  Listening positions 
can be computed only from the position of the tracker.  If 
other CAVE users receive this signal they will be listening 
“inside” of the active user’s head. 

 
Figure 2.  CAVE display systems. 

3.  Sound Composition Protocols 
There is a question whether sound can carry “extra-
musical” information without forfeiting its status as a com-
position.  In text-based music, in music drama, in composed 
quotation, imitation, and sampling we find formulations 
that address but do not resolve this question.  VE expects 
sound to play an informative role, to carry what has been 

understood so far as extra-musical information.  Acoustic 
information space is taken as the embedding space for mu-
sic composition.  A composer’s task in this case can be to 
reverse the roles, and make a composition as an embedding 
space for “extra-musical” sounds. 
We designated sound protocols to help construct a relation 
between informative sound and composition.  The function-
ality and architecture of the audio pipeline was developed 
according to these protocols. 

3.1  Data Driven Sounds 
Data driven sounds respond to numerical patterns that are 
generated in a computational model.  We begin by asking 
“how can this model be interpreted as if it produces 
sound?”  In some cases the data patterns are continuous and 
the values may be used as sound samples directly.  In other 
cases data values are mapped onto synthesis parameters.  
Each of the following categories is to some degree data-
driven if we consider the measurement of user actions a 
data stream. 

3.2  Field Sounds 
Field sounds are dynamical background sounds, constructed 
ambience generators that have internal behavior and also 
respond to data from the VE.  In this sound protocol we 
apply the concept of ecosystem as a living system in which 
many suborganizations are present and interact in order to 
contribute to the globally evolving changes.  Global 
changes have their own internal clock in automated fashion.  
In addition to this automation, field sounds are locally re-
sponsive to an observer’s activities by generating changes 
that correspond to the actions that observer takes in CAVE, 
such as physical movements or wand operations over time.  
These local changes are not isolated signals synchronized 
with the user, they are changes woven into the fabric of the 
sound field. 

3.3  Flying Acoustic Information Space 
In this protocol we use the observer’s location and point of 
view to provide the definition of the scope of information 
retrieval.  We view for example the globe as an information 
source and storage system from which retrieval of the in-
formation will be operated in interactive mode.  We store 
concrete sound samples at points on the earth’s surface and 
these sounds will be retrieved and ‘sampled’ based upon 
where the user’s point of view is projected.  The degree of 
clarity and complexity in the mixture will vary in corre-
spondence to the location an observer.  The flight path 
through information space can be thought of as operating a 
dynamical audio mixer.  The map of the earth’s surface acts 
literally as a map of information storage locations. 

3.4  Sound Cues and Complementary Sounds 
The function of the sound cue is to inform or alert an ob-
server to information which her scope of observation (field 
of view) does not reach.  It can be designed to reveal hidden 
layers of information due to any visual limitations, also to 
emphasize selected layers of information due to overflowed 
complexity in data representation.  Complementary sounds 
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can be understood as a subset of the Data Driven Sounds 
protocol.  The emphasis is on the feature that sounds will 
present complementary information to the visual informa-
tion.  The purpose is to simplify data representation without 
reducing information by presenting it in a multi-modal 
fashion. 

4.  Software Architecture 
By including complex systems models in our concept of 
audio pipeline we make it necessary to import these models 
into our software environment.  There are a formidable 
number of numerical models that may be valuable for 
sound synthesis or composition purposes.  Since these 
models are already implemented in software by experts in 
various fields it does not make sense to duplicate their ef-
forts while trying to generalize their code.  We have 
adopted a client-server architecture so that existing software 
models can be used as control programs for synthesis soft-
ware, with a minimum of re-programming. 
The server can process messages sent to high-level compo-
sition routines or to low-level primitives (figure 3).  Our 
class hierarchy includes 3 subsystems: at the low end, the 
scheduler and sample buffers along with basic synthesis 
algorithms, a middle layer that defines note events and 
synthesis instrument configurations, and a level for describ-
ing complex musical events. 

4.1  HTM 
HTM [Freed, 1992] is a system for real-time interactive 
sound creation.  It is based on the client-server model.  In 
this model, the application program which needs sound is 
called the client.  The client sends requests to the server, 
which is another program, usually running on a different 
computer.  The server then fulfills the client’s requests to 
the best of its ability.  The HTM server is a program that 
accepts commands from a client application program and 
schedules message processing and sound sample genera-
tion. 
On top of this are implemented a number of synthesis algo-
rithms that HTM uses to generate its samples, such as FM, 
additive synthesis, sample playback, and MIDI.  We call 
this the Vanilla Sound Server (VSS). 

4.2  VSS 
VSS is based on the concept of a note event, which is a 
continuing auditory event that has a unique identity.  When 
the client starts a note playing on the server, a note handle 
is returned.  This is a floating point number that can be used 
to refer to this note in the future, so that the client can, for 
instance, change the pitch of the note or turn the note off. 

4.3  Group Functions 
Functions that control groups of parameter changes are 
implemented above VSS to provide higher level control of 
the existing functionality of VSS.  Groups are composed of 
dynamic objects that hang around just above the level of 
VSS.  The client program can communicate with these 
objects to control VSS.  In this way, the client can take 

advantage of the object’s built-in rules and knowledge, 
making the interaction much simpler and higher-level. 
The objects that make up the complex models provide ac-
cess to all the functionality in VSS, and preserve the con-
cept of the note handle.  In addition, each object also has a 
unique handle, so that the client can send multiple message 
to the same object.  As with notes, the object handle is a 
floating point number returned to the client when an it is 
created or retrieved. 
For each VSS synthesis algorithm, there is a corresponding 
object that basically functions as an interface wrapper for 
this algorithm.  Many instances of each object can be cre-
ated, and can either act independently or in tandem. 
For every command applicable to a VSS algorithm, there is 
a corresponding message you can send to its higher-level 
object, so you don’t lose access to lower-level functionality 
by using these objects. 
The messages that objects send to each other are in the 
same form that the client uses to send messages to the 
server.  The result of this is that an object does not know or 
care whether a message comes from a client or from an-
other object.  This is useful in building up a network, as the 
client can test different subsets of the network independ-
ently. 

 
Figure 3.  CAVE Audio Software architecture. 

4.4  The Generic Interface 
The generic interface is intended to simplify the task of 
adding and modifying sound in an application.  It is de-
signed so that although the flow of control and structure is 
defined in the application code, the types of sounds that are 
actually played are defined externally, in an input file.  This 
allows an application’s sound to be modified without 
changing or recompiling the application itself.  To use the 
interface, the client must tell the server which objects it 
wants to use and how it wants those objects configured.  
Then, the client will send data to the objects configured.  
Then, the client will send data to the objects, either at regu-
lar intervals or whenever a state in the application changes. 

5.  Computational Models 
Models for controlling the server are usually based upon 
computational systems developed in the sciences.  To be 
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useful in the audio pipeline these models require some 
adaptations to their software and some interpretive 
consideration by the composer.  When models are 
incorporated they have a numerical systems component and 
an interpretive component.  The interpretive component is 
often realized as an interface that selects salient features of 
the model for interactive control.  An interface can help the 
composer navigate complex parameter spaces and 
differentiate patterns and features from noisy or redundant 
regions i

5.1  Chua’s Circuit 
Many aspects of our current system were prototyped during 
the study of a chaotic electric circuit.  Chua’s circuit pro-
duces many types of signals, from sine-like periodic pat-
terns to intermittent and unpredictable noise-like patterns 
[Rodet, 1993].  Using a digital simulation of the physical 
circuit implemented as a set of ordinary differential equa-
tions, we apply navigation and control techniques to chaos 
for generating musical signals.  Sound is created by con-
verting the numerical representation of the voltage directly 
into sound samples.  We designed the manifold interface to 
facilitate the navigation of the control space of the circuit 
(figure 4).  The manifold describes a function for the con-
tinuous transformation of parameters mapped to the axes of 
the cube.  Paths may be traced on a manifold in real-time, 
and retraced automatically to provide a reproduction of 
sound sequences.  A unique aspect of this interface is the 
simultaneous presentation of control space and multi phase 
space of the circuit. 

 
Figure 4.  The Manifold interface. 

5.2  Alpha Shapes 
We have been exploring the use of sound to represent 
higher-dimensional topological structures, with an interest 
in the reciprocal use of topology for controlling sound.  A 
finite set of points in 3-dimensional space and a real pa-

rameter alpha uniquely define a simplicial complex, con-
sisting of vertices, edges, triangles, and tetrahedral embed-
ded in space.  We call this the alpha-complex of the points.  
The alpha-shape is the geometric object defined as the 
union of the elements in the complex [Edelsbrunner, 1994]. 
Alpha shapes can be viewed as generalizations of the con-
vex hull of the point set.  It formalizes the intuitive notion 
of shape, and for varying parameter alpha, it ranges from 
crude to fine shapes.  The most crude shape is the convex 
hull itself, which is obtained for very large values of alpha.  
As alpha decreases, the shape shrinks and develops cavities 
that may join to form tunnels and voids. 
An audio experience of the complex is based on beginning 
at an arbitrary point and advancing through the shape.  We 
map different features of this wave and its history to differ-
ent sound parameters.  The goal is to explore the complex 
with meaningful auditory and visual cues.  For example, the 
development of the wave is mapped to the sequencing of 
sound envelopes and thus provides audible expression of 
topological connectivity information.  The smoothness of 
the wave is reflected by the shape of the sound spectrum, 
and the combinatorial size is mapped to frequency.  The 
local dimensionality of the complex controls the complexity 
of the sound through the recursive generation of waves of 
lower dimensions. 

6.  Conclusions 
Both the Chua’s circuit and the Alpha Shapes project have 
resulted in new representations of science-based models.  
These models may yield new methods for efficient control 
of sound synthesis algorithms.  The rapid progress on each 
of these projects during the same one-year period can be 
attributed to the presence of a real-time interactive sound 
synthesis pipeline in a graphics-oriented workstation envi-
ronment. 
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